期刊文献+

一种基于图割的交互式脑膜瘤核磁共振图像分割方法 被引量:4

A graph cuts-based interactive method for segmentation of magnetic resonance images of meningioma
下载PDF
导出
摘要 为实现脑膜瘤核磁共振(MR)图像的精确分割,本文提出了一种新的基于图割的交互式图像分割算法。该方法首先提取高维图像特征,然后利用加权KNN(K-Nearest Neighbor)分类器估计待分类像素属于肿瘤与背景区域的概率,并构造新的能量函数;最后采用图割优化方法对能量函数优化求解。对脑膜瘤MR图像的分割实验表明,本方法较基于灰度信息的图割方法在精度上有明显提高。 For accurate segmentation of the magnetic resonance(MR) images of meningioma,we propose a novel interactive segmentation method based on graph cuts.The high dimensional image features was extracted,and for each pixel,the probabilities of its origin,either the tumor or the background regions,were estimated by exploiting the weighted K-nearest neighborhood classifier.Based on these probabilities,a new energy function was proposed.Finally,a graph cut optimal framework was used for the solution of the energy function.The proposed method was evaluated by application in the segmentation of MR images of meningioma,and the results showed that the method significantly improved the segmentation accuracy compared with the gray level information-based graph cut method.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2011年第7期1164-1168,共5页 Journal of Southern Medical University
基金 国家973项目(2010CB732505) 国家自然科学青年基金(30900380) 广东省自然科学基金(9151051501000026) 福建省自然科学基金项目(2008J0312) 南京军区重点课题(08Z021) 南京军区"十一五"计划课题项目(06MA99) 广东省产学研项目(cgzhzd0717)~~
关键词 加权KNN 图割 脑膜瘤分割 weighted k-nearest neighbor graph cuts meningioma segmentation
  • 相关文献

参考文献1

二级参考文献17

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. International Journal of Computer Vision, 1988, 1(4):321-331. 被引量:1
  • 2Adobe Systems Incorporation. Using Adobe Photoshop cs4 [OL]. [2009-03-09]. http://help. adobe. com/en_US/ Photoshop/11.0/index. html. 被引量:1
  • 3Vezhnevets V, Konouchine V. "Growcut "-interactive multi-label N D image segmentation by cellular automata [OL]. [2009-03-09]. http://www. graphicon. ru/2005/ proceedings/papers/VezhntvetsKonushin. pdf. 被引量:1
  • 4Grady L. Random walks for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 31768-1783. 被引量:1
  • 5Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N D images [C]//Proceedings of International Conference on Computer Vision, Vancouver, 2001, 1:105-112. 被引量:1
  • 6Rother C, Kolmogorov V, Blake A. "Grabcut"-interactive foreground extraction using iterated graph cuts [J]. ACM Transactions on Graphics, 2004, 23(3): 309-314. 被引量:1
  • 7Li Y, Sun J, Tang C K, et al. Lazy Snapping [C] // Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2004: 303-308. 被引量:1
  • 8Boykov Y, Kolmogorov V. An experimental comparison of rain cut/max-flow algorithms for energy minimization in vision [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124-1137. 被引量:1
  • 9Kohli P, Torr P H S. Dynamic graph cuts for efficient inference in Markov random fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (12): 2079-2088. 被引量:1
  • 10Kolmogorov V, Zabih R. What energy functions can be minimized via graph cuts? [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (2): 147-159. 被引量:1

共引文献10

同被引文献156

  • 1薛志东,隋卫平,李利军.一种SVM与区域生长相结合的图像分割方法[J].计算机应用,2007,27(2):463-465. 被引量:8
  • 2王玥玥,王秋光.基于图像边缘信息的2维阈值分割方法[J].中国图象图形学报,2007,12(1):78-81. 被引量:33
  • 3Nyirenda G. Kim J, Wen Lingfeng, et al. Automated Segment- ation of Tumour Changes in Temporal PET-CT Data[C]//Proc. oflSBl'12. [S. 1.]: IEEE Press, 2012: 1699-1702. 被引量:1
  • 4Salah M B, Mitiche A, Ayed 1 B. Multiregion Image Segment- ation by Parametric Kernel Graph Cuts[J]. 1EEE Transactions on Image Processing, 2011, 20(2): 545-557. 被引量:1
  • 5Boykov Y, Veksler O, Zabih R. Fast Approximate Energy Minimization via Graph Cuts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 200 I, 23( I 1): 1222-1239. 被引量:1
  • 6Kroon D, Slump C H. Coherence Filtering to Enhance the Mandibular Canal in Cone-beam CT Data[C]//Proc. of Annual Symposium on IEEE-EMBS'09. Enschede, the Netherlands: [s. n.], 2009: 41-44. 被引量:1
  • 7Li Chunming, Xu Chenyang, Gui Changfeng. Distance Regularized Level Set Evolution and Its Application to Image Segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254. 被引量:1
  • 8张楠,杨文明,廖庆敏.MRI图像脑肿瘤分割算法概述[C]//中国生物医学工程学会成立30周年纪念大会暨中国生物医学工程学会学术大会青年优秀论文.北京:中国生物医学工程学会,2010. 被引量:1
  • 9Gooya A, Biros G, Davatzikos C. Deformable registration of glio- ma images using EM algorithm and diffusion reaction modeling[J]. IEEE Transactions on Medieal Imaging, 2011, 30 (2), 375-390. 被引量:1
  • 10Menze BH, Van Leemput, K Lashkari. A generative model for brain tumor segmentation in multi-modal images [C] // Medical Image Computing and Computer-Assisted Intervention, 2010: 151-159. 被引量:1

引证文献4

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部