摘要
先用微积分运算把二阶微分方程的两点边值问题化成一个Fredholm积分方程。然后用泰勒矩阵的方法得到其近似解,即给出未知函数的n阶泰勒展开式,并通过矩阵运算得到泰勒展开式中每项的系数。
Transforms the two-point boundary value problems of second-order differential equation to a Fredholm integral equation,obtains the approximate solution by Taylor-matrix method,which giving n-order Taylor′s expansion of the unknown function,and gets the coefficients of the Taylor′s expansion through Matrix operations.
出处
《湖南工业大学学报》
2011年第3期25-26,96,共3页
Journal of Hunan University of Technology
关键词
微分方程
积分方程
泰勒公式
近似解
differential equations
integral equations
Taylor formula
approximate solution