摘要
设H,K为Hilbert空间,L(H,K)为H到K的有界线性算子全体.设A∈L(H)=dL(H,H)及X,Y∈L(K,H)满足条件:R(A)闭,R(X)■R(A),R(Y)■R(A*).如果(A-XY*)+存在,则可以得到A-XY*的Moore-Pen-rose逆的表示.
Let K,H be Hilbert spaces and L(K,H) the set of all bounded linear operators from K to H.A∈L(H)=d L(H,H) with R(A) closed and X,Y∈L(K,H) with R(X)lohtain in R(A),R(Y)lohtain in R(A^*).In this paper,the representation of Moore-Penrose inverse of A-XY^* is obtained if it exists.
出处
《徐州师范大学学报(自然科学版)》
CAS
2011年第2期12-14,共3页
Journal of Xuzhou Normal University(Natural Science Edition)
基金
Research supported by the National Natural Science Foundation of China(10771069)
Shanghai Leading Academic Discipline Project(B407)