期刊文献+

基于模糊最大散度差判别准则的自适应特征提取模糊聚类算法 被引量:6

Adaptive Feature Extraction Fuzzy Clustering Algorithm Based on Fuzzy Maximum Scatter Difference Discriminant Criterion
下载PDF
导出
摘要 指出皋军等人提出的基于模糊最大散度差判别准则(Fuzzy Maximum Scatter Difference Discriminant Criteri-on,FMSDC)的聚类算法(Fuzzy Maximum Scatter Difference Discriminant Criterion Based Clustering Algorithm,FMSDCA)中聚类中心表达式的推导错误及相关结论的错误,在修改该错误的基础上提出新的基于FMSDC的模糊聚类算法:FMSDC-FCS(Fuzzy Compactness and Separation Clustering Algorithm Based on Fuzzy Maximum Scatter Difference Discriminant Criterion).FMS-DC-FCS利用FMSDC产生最佳投影矢量,利用模糊紧性分离性(Fuzzy Compactness and Separation,FCS)算法对降维数据聚类,通过交替运行原数据空间中的FMSDC和投影空间中的FCS来优化投影矢量和聚类结果,最终通过对降维数据的聚类实现对原始数据的聚类.实验结果表明,FMSDC-FCS总体性能优于原有的FCS算法、FMSDCA算法以及经典的模糊C-均值算法. The derivation mistake of clustering center and the related wrong conclusion in Gao's fuzzy maximum scatter difference discriminant criterion based clustering algorithm(FMSDCA) are pointed out.A new clustering algorithm based on fuzzy maximum scatter difference discriminant criterion(FMSDC),called as fuzzy compactness and separation clustering algorithm based on fuzzy maximum scatter difference discriminant criterion(FMSDC-FCS),is proposed.FMSDC-FCS make use of the FMSDC to generate optimal projection vector and make use of the fuzzy compactness and separation(FCS) algorithm to cluster the reduced-dimensional data set.The projection vector and clustering result are optimized by alternately running FMSDC in the original data space and FCS in the projection space,and the original data is clustered by clustering the reduced-dimensional data.The experimental results demonstrate that the overall performance of FMSDC-FCS surpasses that of original FCS algorithm,FMSDCA and classical fuzzy c-means algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第6期1358-1363,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60572133) 陕西省教育厅研究项目(No.2010JK835)
关键词 模糊聚类 模糊最大散度差判别准则 特征提取 模糊紧性分离性算法 fuzzy clustering fuzzy maximum scatter difference discriminant criterion feature extraction fuzzy compact and separation algorithm
  • 相关文献

参考文献13

  • 1Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithrns[M]. New York: Plenum Press, 1981.95 - 107. 被引量:1
  • 2Yu J. Optimality test for generalized FCM and its application to parameter selection [J]IFEE Tansactios on Fuzzy Systems, 2005,13(1) :164- 176. 被引量:1
  • 3Yang M S,Wu K L, et al. Alpha-cut implemented fuzzy cluster- ing algorithms and switching regressions[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2008, 38 (3) : 588 - 603. 被引量:1
  • 4范九伦,吴成茂.FCM算法中隶属度的新解释及其应用[J].电子学报,2004,32(2):350-352. 被引量:35
  • 5于剑,程乾生.关于FCM算法中的权重指数m的一点注记[J].电子学报,2003,31(3):478-480. 被引量:23
  • 6Wu K L, Yu J, Yang M S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality test [J]. Pattern Recognition Letters, 2005,26(5) :639 - 652. 被引量:1
  • 7Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1997,19(7) :711 - 720. 被引量:1
  • 8Yu H,Yang J.A direct LDA algorithm for high dimensional da- ta-with application to face recognition[J]. Pattern Recognition, 2001,34(10) :2067 - 2070. 被引量:1
  • 9Ye J P. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems [ J ]. Journal of Machine Learning Research,2005,6(4) :483 - 502. 被引量:1
  • 10宋枫溪,程科,杨静宇,刘树海.最大散度差和大间距线性投影与支持向量机[J].自动化学报,2004,30(6):890-896. 被引量:58

二级参考文献26

共引文献175

同被引文献38

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部