摘要
The Arlequin framework proposed by Ben Dhia in 1998 is a flexible and robust method for conducting global/local analysis of structures and materials.A penalty version of the Arlequin framework for the study of structural problems involving large deformation is considered here.The implementation of the penalty-based Arlequin framework into ABAQUS is then explored and the corresponding Arlequin user element subroutine is developed.Geometric nonlinear simulations of a cantilever beam and a shallow arch are conducted and the choice of the coupling operator with an appropriate penalty parameter is studied.The numerical results justify the feasibility of the proposed method,ensuring its further application to more complicated problems involving geometric or material nonlinearities.
The Arlequin framework proposed by Ben Dhia in 1998 is a flexible and robust method for conducting global/local analysis of structures and materials. A penalty version of the Arlequin framework for the study of structural problems involving large deformation is considered here. The implementation of the penalty-based Arlequin framework into ABAQUS is then ex- plored and the corresponding Arlequin user element subroutine is developed. Geometric nonlinear simulations of a cantilever beam and a shallow arch are conducted and the choice of the coupling operator with an appropriate penalty parameter is studied. The numerical results justify the feasibility of the proposed method, ensuring its further application to more complicated problems involving geometric or material nonlinearities.
基金
Project supported by the National Natural Science Foundation of China (No. 10725210)
the National Basic Research Program (973) of China (No. 2009CB623200)