期刊文献+

Analysis of the penalty version of the Arlequin framework for the prediction of structural responses with large deformations

Analysis of the penalty version of the Arlequin framework for the prediction of structural responses with large deformations
原文传递
导出
摘要 The Arlequin framework proposed by Ben Dhia in 1998 is a flexible and robust method for conducting global/local analysis of structures and materials.A penalty version of the Arlequin framework for the study of structural problems involving large deformation is considered here.The implementation of the penalty-based Arlequin framework into ABAQUS is then explored and the corresponding Arlequin user element subroutine is developed.Geometric nonlinear simulations of a cantilever beam and a shallow arch are conducted and the choice of the coupling operator with an appropriate penalty parameter is studied.The numerical results justify the feasibility of the proposed method,ensuring its further application to more complicated problems involving geometric or material nonlinearities. The Arlequin framework proposed by Ben Dhia in 1998 is a flexible and robust method for conducting global/local analysis of structures and materials. A penalty version of the Arlequin framework for the study of structural problems involving large deformation is considered here. The implementation of the penalty-based Arlequin framework into ABAQUS is then ex- plored and the corresponding Arlequin user element subroutine is developed. Geometric nonlinear simulations of a cantilever beam and a shallow arch are conducted and the choice of the coupling operator with an appropriate penalty parameter is studied. The numerical results justify the feasibility of the proposed method, ensuring its further application to more complicated problems involving geometric or material nonlinearities.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第7期552-560,共9页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project supported by the National Natural Science Foundation of China (No. 10725210) the National Basic Research Program (973) of China (No. 2009CB623200)
关键词 Global/Local analysis Geometric nonlinear analysis Penalty-based Arlequin method User defined element Global/Local analysis, Geometric nonlinear analysis, Penalty-based Arlequin method, User defined element
  • 相关文献

参考文献16

  • 1Bathe, K.J., 1996. Finite Element Procedures. Prentice Hall, USA. 被引量:1
  • 2Ben Dhia, H., 1998. Multiscale mechanical problems: the Arlequin method. Comptes Rendus de l'Academie des Sciences-Series IIB-Mechanics-Physics-Astronomy, 326(12):899-904 (in French). [doi:l O. 1016/S1251-8069 (99)80046-5]. 被引量:1
  • 3Ben Dhia, H., 2008. Further insights by theoretical investiga tions of the multi-scale Arlequin method. International Journal for Multiscale Computational Engineering, 6(3): 215-232. [doi: 10.1615/IntJMultCompEng.v6.13.30]. 被引量:1
  • 4Ben Dhia, H., Rateau, G., 2001. Analyse mathematique de la methode arlequin mixte. Comptes Rendus de l'Academie des Sciences-Series I-Mathematics, 332(7):649-654 (in French). [doi:10.1016/S0764-4442(01)01900-0]. 被引量:1
  • 5Ben Dhia, H., Zammali, C., 2004. Level-sets and Arlequin framework for dynamic contact problems. Finite Ele ments European Review, 5-7(13):403-414. 被引量:1
  • 6Ben Dhia, H., Rateau, G., 2005. The Arlequin method as a flexible engineering design tool. International Journal for Numerical Methods in Engineering, 62(11):1442-1462. [6oi:10.1002/nme.1229]. 被引量:1
  • 7Chandrupatla, T.R., Belegundu, A.D., 1991. Introduction to Finite Elements in Engineering. Prentice-Hall, USA. Fish, J., 1992. The s-version of the finite element method. Computers and Structures, 43(3):539-547. [doi:10.1016/ 0045-7949(92)90287-A]. 被引量:1
  • 8Guidault, P.A., Belytschko, T., 2007. On the L2 and the H1 couplings for an overlapping domain decomposition method using Lagrange multipliers. International Journal for Numerical Methods in Engineering, 70(3):322-350. [doi: 10.1002/nine. 1882]. 被引量:1
  • 9Hu, H., Belouettar, S., Potier-Ferry, M., Daya, E.M., 2008. Multi-scale modelling of sandwich structures using the Arlequin method Part I: linear modelling. Finite Elements in Analysis and Design, 45(1):37-51. [doi:10.1016/j. finel.2008.07.003]. 被引量:1
  • 10Hu, H., Belouettar, S., Potier-Ferry, M., Daya, E.M., Makradi, A., 2010. Multi-scale nonlinear modelling of sandwich structures using the Arlequin method. Composite Structures, 92(2):515-522. [doi:10.1016/j.compstruct. 2009.08.051]. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部