期刊文献+

非线性滤波算法性能对比 被引量:7

Performances comparison on nonlinear filtering algorithms
下载PDF
导出
摘要 随着目标运动的多样性和复杂化,雷达非线性目标跟踪算法越来越受到重视。本文对目前非线性滤波的主要算法即扩展卡尔曼滤波、不敏卡尔曼滤波、粒子滤波的滤波模型、适用条件、性能进行了分析比较,通过一个非线性非高斯模型进行了仿真,验证了这些算法的性能,仿真结果表明非线性条件下粒子滤波算法要明显优于其它两种滤波算法。 With the goal of the diversity and complexity of motion,nonlinear target tracking of radar is paid more and more attention.This paper present the main algorithms of the nonlinear filter extended Kalman filter,Unscented Kalman filter,particle filter the filter model,applicable conditions,performance is analyzed and compared,a non-linear and non-Gaussian model was simulated to verify the performance of these algorithms,simulation results show that the particle filter under nonlinear conditions is much better than the other two filtering algorithms.
作者 刘德春 谭信
出处 《电子设计工程》 2011年第13期49-51,共3页 Electronic Design Engineering
关键词 非线性滤波 扩展卡尔曼滤波 不敏卡尔曼滤波 粒子滤波 nonlinear filter Extended Kalman Filter(EKF) Unscented Kalman Filter(UKF) Particle Filter(PF)
  • 相关文献

参考文献7

  • 1何友著..雷达数据处理及应用[M].北京:电子工业出版社,2009:367.
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 3江宝安..基于UKF滤波的单目标跟踪算法研究[D].国防科学技术大学,2003:
  • 4胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 5朱志宁.粒子滤波算法及其应用[M].北京:科学出版社,2010. 被引量:2
  • 6吴凡..基于非线性滤波的机动目标跟踪算法研究[D].西安电子科技大学,2010:
  • 7Merve R, Doucet A. The unscented particle filter [J]. Technical Reprot CUED/FINFENG/TR 380, 2000:1-45. 被引量:1

二级参考文献75

  • 1Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188. 被引量:1
  • 2Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141. 被引量:1
  • 3Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632. 被引量:1
  • 4Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[EB/OL].http://www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip,1997-09-27. 被引量:1
  • 5Julier S J,Uhlmann J K.A consistent,debiased method for converting between polar and Cartesian coordinate systems[A].The Proc of AeroSense:The 11th Int Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:110 -121. 被引量:1
  • 6Julier S J,Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[A].The Proc of AeroSense:11th Int Symposium Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:54-65. 被引量:1
  • 7Julier S J.A skewed approach to filtering[A].The Proc of AeroSense:12th Int Symposium Aerospace/Defense Sensing Simulation Control[C].Orlando,1998:271-282. 被引量:1
  • 8Julier S J.The spherical simplex unscented transformation[A].American Control Conf[C].Denver,2003:2430-2434. 被引量:1
  • 9Julier S J,Uhlmann J K,Durrant-Whyte H F.A new approach for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Trans on Automatic Control,2000,45(3):477-482. 被引量:1
  • 10Lefebvre T,Bruyninckx H,De Schutter J.Comment on"a new method for the nonlinear transformation of means and covariances in filters and estimators"[J].IEEE Trans on Automatic Control,2002,47(8):1406-1408. 被引量:1

共引文献514

同被引文献54

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部