期刊文献+

导电薄板在纵向磁场中的谐波共振分析

Harmonic resonance of current-conducting thin plate in longitudinal magnetic field
下载PDF
导出
摘要 基于Maxwell方程及Kirchhoff薄板基本假设,导出了导电薄板的非线性磁弹性振动方程、电动力学方程和电磁力表达式。在此基础上,研究了纵向磁场中横向机械动载作用下条形薄板的非线性谐波共振问题。针对两端简支边界条件情况,应用伽辽金法进行积分,导出了关于振动位移和电场强度函数的磁弹性耦合振动微分方程组。利用多尺度法进行求解,得到了共振下的幅频响应方程,并对定常解的稳定性进行了分析,得到了解的稳定性判定条件。通过数值计算,得到了共振振幅随调谐参数、激励力幅值和磁感应强度的变化规律曲线图,以及系统振动位移和电场强度的时程响应图,分析了电磁、机械等参量对共振现象及解的稳定性的影响。 Based on the Maxwell equation and Kirchhoff assumption of thin plate,nonlinear magneto-elastic vibration equation,electrodynamics equation,electromagnetic forces expressions of current-conducting thin plate are deduced.Furthermore,nonlinear harmonic resonance of thin strip-plate under lateral mechanical motive load in longitudinal magnetic field is studied.Considering the thin plate simply supported on two opposite sides,the magneto-elastic coupled vibration differential equations about function of displacement of vibration and electric field intensity are obtained by the method of Galerkin.Then,the amplitude-frequency re-sponse equation under resonance is derived by using method of multiple scales,and the stability of stable solution is analyzed;the discriminant of stable solutions is obtained.Through the numerical calculation,characteristic curves of amplitude changing with detuning parameter,the excitation amplitude and the magnetic intensity,and also the time history response plot of systemic dis-placement of vibration and electric field intensity are obtained.At last,the influence of electric-magnetic and mechanic parameter on resonance phenomenon and stability of solution are analyzed.
出处 《燕山大学学报》 CAS 2011年第3期271-276,共6页 Journal of Yanshan University
基金 河北省自然科学基金资助项目(E2010001254)
关键词 磁弹性 导电薄板 谐波共振 磁场 多尺度法 magnetic-elasticity current-conducting thin plate harmonic resonance magnetic field method of multiple scales
  • 相关文献

参考文献1

二级参考文献16

  • 1胡宇达,邱家俊,塔娜.压板松动时大型发电机端部绕组的主共振与分岔[J].应用数学和力学,2005,26(4):465-473. 被引量:5
  • 2aPao Y H, Yeh C S. A linear theory for soft ferromagnetic elastic bodies[J]. International Journal of Engineering Science, 1973,11(4) :415-436. 被引量:1
  • 3Moon F C, Pao Y H. Vibration and dynamic instability of a beam-plate in a transverse magnetic field [J]. Journal of Applied Mechanics, 1969,36(2) : 141-149. 被引量:1
  • 4Moon F C. Magneto-Solid Mechanics[ M]. New York: John Willey and Sons, 1984. 被引量:1
  • 5Lu Q S, To C W S, Huang K L. Dynamic stability and bifurcation of an alternating load and magnetic field excited magnetoelastic beam[J]. Journal of Sound and Vibration, 1995,181(5) :873-891. 被引量:1
  • 6Hai W, Duan Y, Pan X. An analytical study for controlling trustable periodic motion in magneto-elastic chaos[J]. Physics Letter A, 1997,234(3) : 198-204. 被引量:1
  • 7Thompson R C A, Mullin T. Routes to chaos in a magneto-elastic beam[ J]. Chaos Solitons and Fraclals, 1997,8(4) :681-697. 被引量:1
  • 8Wu G Y. The analysis of dynamic instability on the large amplitude vibrations of a beam with trans- verse magnetic fields and thermal loads[ J]. Journal of Sound and Vibration, 2007,302( 1/2): 167- 177. 被引量:1
  • 9Wang X Z, Lee J S, Zheng X J. Magneto-thenno-elastic instability of ferromagnetic plates in thermal and magnetic fields[ J]. International Journal of Solids and Structures ,2003,40(22): 6125-6142. 被引量:1
  • 10Амбарцумян С А.Ъагдасарян Г Е.Ъепубекян М В.Мazhumoynpy2ocmb Тонкцх Оболочех ч Пласмцн[M].Москва:Наука,1977. 被引量:1

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部