期刊文献+

基于自适应遗传算法模糊PID控制器参数优化 被引量:7

Optimization of Fuzzy Logic PID Controller Based on Adaptive Genetic Algorithm
下载PDF
导出
摘要 该文针对自适应模糊控制器的多参数优化问题,提出一种自适应遗传算法同时优化模糊规则和隶属函数的方法。先对隶属度函数和控制规则进行联合编码,遗传进化前期采用锦标赛精英保留,后期采用基于轮盘赌的非线性选择方法,保留了种群中较优个体,提高种群的多样性。采用一种自适应交叉变异算子,使交叉变异概率根据进化过程不断自动调整,避免算法过早收敛,加快收敛速度。仿真结果表明,优化后的自适应模糊控制器具有良好的动静态特性。 An adaptive genetic algorithm is introduced to optimize the membership functions and the fuzzy control rules in SFPID controller. Joint coding is done with membership functions and rules. With elitist strategy adopted in early genetic evolution stage, a nonlinear selection method based on roulette selection(RS) ,is introduced in last period. Optimum individuals are preserved and population diversity is increased. An adaptive crossover mutation operator makes the probability of crossover and mutation adjusted with evolution stage changing, that prevents prematurity and speeds up convergence. Simulation results on a second-order control object show that the optimized SFPID controller has good dynamic and static characteristics.
出处 《杭州电子科技大学学报(自然科学版)》 2011年第3期58-61,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省重大科技专项资助项目(C01015-2) 杭电科研基金资助项目(KYF041505004)
关键词 模糊控制器 自适应遗传算法 隶属度函数 控制规则 fuzzy logic PID controller adaptive genetic algorithm membership functions fuzzy control rules
  • 相关文献

参考文献6

  • 1Ilyas Eker, Yunis Torun. Fuzzy logic control to be conventional method [ J ]. Energy Conversion and Management, 2006, 47(4) : 377 -394. 被引量:1
  • 2胡包钢,应浩.模糊PID控制技术研究发展回顾及其面临的若干重要问题[J].自动化学报,2001,27(4):567-584. 被引量:201
  • 3Ko Chia-Nan, Lee Tsong-Li, Fu Yu-Yi, et al. Simultaneous auto-tuning of membership functions and fuzzy control rules using genetic algorithms[ C]. Taiwan: 2006 IEEE International Conference on Systems, Man, and Cybernetics, 2007- 1 102 - 1 107. 被引量:1
  • 4Altinten A, Erdogan S, Hapoglu H, et al. Application of Fuzzy Control Method with Genetic Algorithm to a Polymerization Reactor at Constant Set Point[ J]. Chemical Engineering Research and Design, 2006, 84( 11 ) : 1 012 -1 018. 被引量:1
  • 5Wu Zhi Qiao, Masaharu Mizumoto. PID type fuzzy controller and parameters adaptive method [ J ]. Fuzzy Sets and Sys- tems, 1996, 78 ( 1 ) : 23 - 35. 被引量:1
  • 6邝航宇,金晶,苏勇.自适应遗传算法交叉变异算子的改进[J].计算机工程与应用,2006,42(12):93-96. 被引量:95

二级参考文献16

  • 1沙智明,郝育黔,郝玉山,杨以涵.基于改进自适应遗传算法的电力系统相量测量装置安装地点选择优化[J].电工技术学报,2004,19(8):107-112. 被引量:15
  • 2卢朝晖,黄道君.模糊控制器的绝对稳定性圆判据[J].控制理论与应用,1994,11(6):697-702. 被引量:4
  • 3J H Holland.Adaptation in Natural Artificial Systems[M].MIT Press,1975 被引量:1
  • 4Masanori Sugisaka,Xinjian Fan.Adaptive Genetic Algorithm with a Cooperative Mode[C].In:Proceedings of IEEE International Symposium on Industrial Electronics,2001 被引量:1
  • 5D E Goldberg.Genetic Algorithm in Search,Optimization,and Machine Learning[M].Addison-Wesley,1989 被引量:1
  • 6Srinvas M,Patnaik L M.Adaptive Probabili-ties of Crossover and Mutation in Genetic Algorithms[C].In:IEEE Trans on Systems,Man and Cybernetics,1994,24 (4) 被引量:1
  • 7F Herrera,M Lozano.Adaptation of genetic algorithm parameters based on fuzzy logic Controllers[C].In:F Herrera,J L Verdegay eds.Genetic Algorithms and Soft Comuting,Berlin,Germany:Springer-Verlag,1996:95~125 被引量:1
  • 8A E Eiben,R Hinterding,Z Michalewicz.Parameter control in evolutionary algorithms[J].IEEE Trans Evol Comput,1999,3:124~141 被引量:1
  • 9J E Smith,T C Fogarty.Operator and parameter adaptation in genetic algorithms[J].Soft Computing,1997,1 (2):81~87 被引量:1
  • 10Mennon A,K Mehrotra,C K Mohan et al.Characterization of a class of sigmoid functions with applications to neural networks[J].Neural Networks,1996,9:819~835 被引量:1

共引文献294

同被引文献47

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部