期刊文献+

基于特征子空间虚假邻点判别的软传感器模型变量选择 被引量:4

Reduction of Secondary Variables on Soft Sensor Model Based on False Nearest Neighbours in Feature Subspace
下载PDF
导出
摘要 辅助变量选择技术是软传感器建模过程中降低信息冗余和提高效率的有效方法。提出一种结合偏最小二乘回归法与虚假最近邻法的变量选择法。采用偏最小二乘回归法有效合理地消除因子之间的多重共线性,在一个新的正交空间里,受混沌相空间虚假最近邻点法的启示,通过计算某变量选择前后在特征子空间里的相关性,判断其对主导变量的解释能力,由此进行变量的选择,利用偏最小二乘法得到软测量模型。该方法通过构造的试验和Jolliff变量选择试验作了验证,结果显示该方法有良好的辅助变量选择能力,为软传感器建模的辅助变量选择方法提供了一种新方法。 Selection of secondary variables is an effective way to reduce redundant information and to improve efficiency in soft sensor modeling.A novel method based on partial least-squares(PLS) regression method and false nearest neighbor(FNN) method is proposed for selecting the most suitable secondary process variables used as soft sensing inputs.In the proposed approach,the PLS regression method is employed to overcome difficulties encountered with the existing multicollinearity between the factors.In a new orthogonal space,inspired by chaos phase space FNN method,through calculation of the relativities of a certain variable in the feature subspace before and after selection,its interpretation of primary variable can be estimated,then selection of variables is carried out,and the least square method is used to obtain a soft-sensing model.This method is verified through structure test and Jolliff variable selection test,and the results demonstrate that it has good capability of secondary variable selection.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第12期7-12,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(50905194) 重庆市自然科学基金(CSTC2008BB2356)资助项目
关键词 软传感器建模 辅助变量选择 特征子空间 偏最小二乘回归法 虚假最近邻法 Soft sensor modeling Secondary variable selection Feature subspace Partial least-squares regression method False nearest neighbor method
  • 相关文献

参考文献11

  • 1DONG H L, SUNG H L, MAN G N. Smart soft-sensing for the feedwater flowrate at PWRs using a GMDH algorithm[J]. IEEE Transactions on Nuclear Science. 2010, 57(1). 340-347. 被引量:1
  • 2BRUSCO, MICHAEL J. Exact and approximate algorithms for variable selection in linear discriminant analysis[J]. Computational Statistics and Data Analysis, 2011, 55(1): 123-131. 被引量:1
  • 3周玉清,梅雪松,姜歌东,孙挪刚,陶涛.基于内置传感器的大型数控机床状态监测技术[J].机械工程学报,2009,45(4):125-130. 被引量:24
  • 4MICHELSEN, FINN A. Selection of optimal, controlled variables for the TEALARC LNG process[J]. Industrial and Engineering Chemistry Research, 2010, 49(18): 8624-8632. 被引量:1
  • 5CIPOLLINI, FABRIZIO. Automated variable selection in vector multiplicative error models[J]. Computational Statistics and Data Analysis, 2010, 54(11): 2470-2486. 被引量:1
  • 6MASION R L, GUNST R F. Statistical design and analysis of experiments with applications to engineering and science[M]. New York: John Wiley & Sons, 2004. 被引量:1
  • 7MCDONALD G C, SCHWING R C. Instabilities of regression estimates relating air pollution to mortality[J]. Technometrics, 1973, 15: 463-481. 被引量:1
  • 8SAMPRIT C, ALI S H, BERTRAM E Regression analysis by example [M]. 3rd ed. New York: John Wilely & Sons, 2000. 被引量:1
  • 9WOLD S, SJOSTROM M, ERIKSSON L. PLS-regression: A basictool of chemometrics[J]. Chemometrics & Intelligent Laboratory Systems, 2001, 58(2): 109-130. 被引量:1
  • 10王海燕,盛昭瀚.混沌时间序列相空间重构参数的选取方法[J].东南大学学报(自然科学版),2000,30(5):113-117. 被引量:67

二级参考文献13

  • 1LIANG S Y, HECKER R L, LANDERS R G. Machining process monitoring and control: The state-of-the-art[J]. Journal of Manufacturing Science and Engineering, 2004, 5(12): 297-310. 被引量:1
  • 2JEONG Y H, CHO D W. Estimating cutting force from rotating and stationary feed motor currents on a milling machine[J]. International Journal of Machine Tools & Manufacture, 2002, 2:1 559-1 566. 被引量:1
  • 3KIM G D, CHU C N. Indirect cutting force measurement considering frictional behavior in a machining centre using feed motor current[J]. Int. J. Adv. Manuf. Techno., 1999, 15: 478-484. 被引量:1
  • 4LI Xiao. Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring [J]. IEEE Transaction on Industrial Electronics, 2000, 47(3): 697-702. 被引量:1
  • 5LOPEZ De Lacalle L N, LAMIKIZ A, SANCHEZ J A, et at. Recording of real cutting forces along the milling of complex parts[J]. Fernandez de Bustos Mechatronics, 2006,16: 21-32. 被引量:1
  • 6KIM M S, CHUNG S C. A systematic approach to design high-performance feed drive systems[J]. International Journal of Machine Tools & Manufacture, 2005, 45: 1 421-1 435. 被引量:1
  • 7ALTINTAS Y. Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design[M]. Cambridge: Cambridge University Press, 2000. 被引量:1
  • 8LOPEZ De Lacalle L N, LAMIKIZ A, SANCHEZ J A, et al. WebTurning: Teleoperation of a CNC turning center through the Internet[J]. Journal of Materials Processing Technology, 2006, 179:251-259. 被引量:1
  • 9SIEMENS. Sinumerik 810D / 840D / 840Di ePS function databook[EB/OL].[2005-11-01], http: //www.automation. siemens.com/doconweb. 被引量:1
  • 10MOHANTY A R, KAR Chinmaya. Monitoring gear vibrations through motor current signature analysis and wavelet transform[J]. Mechanical Systems and Signal Processing, 2006, 20: 158-187. 被引量:1

共引文献89

同被引文献38

  • 1Zheng Shuxian,Zhao Wanhua,Lu Bingheng,Zhao Zhao.FEATURE EXTRACTION OF BONES AND SKIN BASED ON ULTRASONIC SCANNING[J].Chinese Journal of Mechanical Engineering,2005,18(4):510-514. 被引量:3
  • 2CHENG H P, CHENG C S. Artificial immune algorithm-based ap- proach to recognizing unnatural patterns among autocorrelated char- acteristics[ J]. African Joumal of Business Management, 2011, 5 (16): 6801 -6813. 被引量:1
  • 3GUH R S, SHIUE Y R. On-line identification of control chart pat- terns using self-organizing approaches[ J]. International Journal of Production Research, 2005, 43(6) : 1225 - 1254. 被引量:1
  • 4AWADALLA M H A, ISMAEIL I, SADEK M A. Spiking neural network-based control chart pattern recognition[ J]. Journal of Engi- neering and Technology Research, 2011,3(1) : 5 - 15. 被引量:1
  • 5EBRAHIMZADEH A, RANAEE V. Control chart pattern recogni- tion using an optimized neural network and efficient features [ J]. ISA Transactions, 2010, 49(3) : 387 - 393. 被引量:1
  • 6CHENG Z, MAY. A research about pattern recognition of control chart using probability neural network [ J]. CCCM '08: Proceedings of the 2008 ISECS International Colloquium on Computing, Commu- nication, Control, and Management. Washington, DC: IEEE Com-purer Soeiety, 2008:140 - 145. 被引量:1
  • 7WANG C H, KUO W. Identification of control chart patterns using wavelet filtering and robust fuzzy clustering[ J]. Journal of Intelligent Manufacturing, 2007, 18(3) : 343 -350. 被引量:1
  • 8SCHOLKOPF B, SMOLA A J. Learning with kernels [ M]. Cam- bridge: MIT Press, 2002. 被引量:1
  • 9MONTGOMERY D C, GERTH R. Introduction to statistical quality control[J]. IIE Transactions, 1998, 30(6): 571. 被引量:1
  • 10GUH R S, HSIEH Y C. A neural network based model for abnormal pattern recognition of control charts[ J]. Computers & Industrial En- gineering, 1999, 36(1) : 97 - 108. 被引量:1

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部