期刊文献+

解大规模无约束优化的自适应过滤信赖域法

Adaptive filter trust region method for large scale unconstrained optimization
下载PDF
导出
摘要 提出一种解大规模无约束优化问题的自适应过滤信赖域法。用目标函数的梯度及迭代点的信息来构造目标函数海赛矩阵的近似数量矩阵,引进了过滤技术和自适应技术,大大提高了计算效率。从理论上证明了新算法的全局收敛性,数值试验结果也表明了新算法的有效性。 An adaptive filter trust region method for large scale unconstrained optimization is proposed.This new algorithm uses the function and its gradients to determine a scale matrix as an approximation of its Hessian matrix in the subproblem. The adaptive tecluaique and filter technique are introduced to improve the behavior of the method.The new algorithm is shown to be globally convergent and numerical experiments indicate that it is very effective for large scale unconstrained minimization problems.
作者 周群艳
出处 《计算机工程与应用》 CSCD 北大核心 2011年第20期47-49,108,共4页 Computer Engineering and Applications
基金 江苏技术师范学院基金(No.KYY08041)
关键词 大规模无约束优化 过滤技术 梯度法 自适应信赖域法 全局收敛性 large scale unconstrained optimization filter technique gradient method adaptive trust region method global convergence
  • 相关文献

参考文献10

  • 1袁亚湘,孙文瑜.最优化理论和方法[M].北京:科学出版社,1997. 被引量:11
  • 2Barzilai J,Borwein J M.Two point step size gradient method[J]. IMA J Numer Anal, 1998,8:141-148. 被引量:1
  • 3Raydan M.The Barzilai and Barwein gradient method for large scale unconstrained minimization problem[J].SIAM J Optim 1997,7:26-33. 被引量:1
  • 4Grippo L, Lamparillo F, Lucidi S.A nonmonotone technique for Newton's method[J].SIAM J Numer 23:707-716. line Anal, search 1986,. 被引量:1
  • 5Andrei N.A new gradient descent method for unconstrained optimization[R].ICI Technical Report,April 2004. 被引量:1
  • 6Fletcher R, Leyffer S.Nonlinear programming without a penalty function, NA/171 [R].Scotland: Department of Mathematics, University of Dundee, 1997. 被引量:1
  • 7Gould N I M, Sainvitu C, Toint P L.A filter-trust-region method for unconstrained optimization, RAL-TR-2004-009[R].Oxford, England: Computational Science and Engineering Department, Rutherford Appleton Laboratory,2004. 被引量:1
  • 8缪卫华,孙文瑜.一个解无约束优化问题的过滤信赖域方法[J].高等学校计算数学学报,2007,29(1):88-96. 被引量:22
  • 9Zhang X S, Zhang J L, Liao L Z.An adaptive trust region method and its convergence[J].Science in China: series A, 2002,45 : 620-631. 被引量:1
  • 10Fu J, Sun W.Nonmonotone adaptive trust-region method for un constrained optimization problems[J].Applied Mathematics and Computation, 2005,163 : 489-504. 被引量:1

二级参考文献17

  • 1Conn A R, Gould N I M, Toint Ph L. Trust region methods. SIAM, Philadelphia, USA, 2000 被引量:1
  • 2Deng N Y, Xiao Y, Zhu D. A nonmonotone trust region algorithm. J. Optimiz. Theory Appl., 1993, 76:259-285 被引量:1
  • 3Fletcher R, Gould N I M, Toint Ph L. Global convergence of trust-region SQP filter algorithm for general nonlinear programming. Technical Report RAL-TR-1999-041, Computational Sicence and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, England, UK, 1999 被引量:1
  • 4Fletcher R, Leyffer S. Nonlinear programming without a penalty function. Technical Report NA/171, Department of Mathematics, University of Dundee, Dundee, Scotland, 1997 被引量:1
  • 5Fletcher R, Leyffer S, Toint Ph L. On the global convergence of a filter-SQP algorithm. Technical Report NA/197, Department of Mathematics, University of Dundee, Dundee, Scotland, 2000 被引量:1
  • 6Gould N I M, Leyffer S, Toiut Ph L. A multidimensional filter algorithm for nonlinear equations and nonlinear least-squares. Technical Report RAL-TR-2003-004, Computational Sicence and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, England, UK, 2003 被引量:1
  • 7Gould N I M, Lucidi S, Roma M, Toint Ph L. Solving the trust-region subproblem using the Lanczos method. SIAM J. Optimiz., 1999, 9(2): 504-525 被引量:1
  • 8Gould N I M, Sainvitu C, Toint Ph L. A filter-trust-region method for unconstrained optimization. Technical Report RAL-TR-2004-009, Computational Sicence and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, England, UK, 2004 被引量:1
  • 9More J J, Sorensen D C. Computing a trust-region step. SIAM J. Sci. Statist. Comput., 1983, 4:553-572 被引量:1
  • 10Nocedal J, Wright S J. Numerical optimization. Springer, New York, 1999 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部