期刊文献+

Legendre多项式零点的一种求解方法及应用 被引量:2

A kind of solution method of Legendre polynomials zeros and its application
原文传递
导出
摘要 探讨Legendre正交多项式的性质并给出它关于n奇偶性的通项表示.通过n个零点及其对称性,借助配方多项式,建立配方系数与通项系数的对应关系,构造配方系数的非线性方程组.最后,用拟牛顿法求解配方系数,求得Legendre多项式的n个零点和对应的求积系数,降低零点求解的复杂度,方便了Gauss型求积公式的应用. The nature of the Legendre orthogonal polynomials and a common expression about n parity are discussed in this paper. By using of Legendre orthogonal polynomials n zero' s symmetry and poly-nomial formula, the formula coefficients and the corresponding coefficients are established in the rela- tionship between structure formula coefficients of nonlinear equations. Making use of the final quasi - Newton method for solving formula coefficients, the n - zero of sponding quadrature Legendre polynomials and the corre-coefficients are obtained. Our results efficiently reduce the complexity of solving zeros of Legendre polynomials for the Gauss quadrature formula.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期334-338,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省教育厅科研资助项目(JB08027 JB08026) 福州大学研究生教育研究资助项目(09AY09)
关键词 Legendre正交多项式 零点 配方多项式 非线性方程组 Gauss求积 Legendre orthogonal polynomials zeros polynomials formula nonlinear equations Gauss integration
  • 相关文献

参考文献8

  • 1关冶,陆金甫.数值分析基础[M].北京:高等教育出版社,1998. 被引量:2
  • 2杨大地,谈骏渝.实用数值分析[M].重庆:重庆大学出版社,2003. 被引量:1
  • 3夏爱生,胡宝安,王瑞,陈博文,刘俊峰.Gauss-Legendre求积公式的收敛性[J].天津理工大学学报,2006,22(3):63-65. 被引量:4
  • 4张庆礼,王晓梅,殷绍唐,江海河.高阶高斯积分节点的高精度数值计算[J].中国工程科学,2008,10(2):35-40. 被引量:17
  • 5Boyd J P. Computing the zeros of a Fourier series or a Chebyshev series or general orthogonal polynomial series with parity sym- metries [ J ]. Computers and Mathematics with Applications, 2007, 54 ( 3 ) : 336 - 349. 被引量:1
  • 6Boyd J P. Computing the zeros, maxima and inflection points of Chebyshev, Legendre and Fourier series: solving transcendental equations by spectral interpolation and polynomial rootfinding[ J]. Journal of Engineering Mathematics, 2006, 56 (3) : 203 - 219. 被引量:1
  • 7Swarztrauber P N. On computing the points and weights for Gauss - Legendre quadrature[ J]. SIAM Journal of Scientific Compu- ting, 2003, 24(3): 945-954. 被引量:1
  • 8余海洋,方世跃.关于勒让德多项式递推公式的研究[J].四川理工学院学报(自然科学版),2008,21(2):27-29. 被引量:8

二级参考文献14

  • 1张万舟,倪致祥.勒让德方程解的探索[J].阜阳师范学院学报(自然科学版),2006,23(3):49-50. 被引量:2
  • 2刘保童.关于勒让德多项式的积分表示研究[J].天水师范学院学报,2007,27(2):1-2. 被引量:1
  • 3苏安,李秉宽,邓卫娟,潘波依.静电场中用勒让德多项式求解时确定系数的方法探讨[J].河池学院学报,2007,27(2):26-29. 被引量:1
  • 4Kincaid D, Cheney W. Numerical Analysis: Mathematics of Scientific Computing [M]. Beijing: China Machine Press, 2003. 493 被引量:1
  • 5Abramowitz M, Stegun I A. Handbook of Mathematical Functions With Formulas Graphs, and Mathematical Tables[ M ]. The Fifth Printing, Washington: U.S. Government Printing Office, 1964. 919- 924 被引量:1
  • 6图马 J J,沃尔什 R A.工程数学手册[M].欧阳芳锐,张玉平译,北京:科学出版社,2002.282,424. 被引量:1
  • 7Recktenwald G. Numerical Methods With Matlab: Implementation and Application [M]. Translated by Wu Weiguo, Wan Qun, Zhang Hui, et al. Beijing: China Machine Press, 2004. 439 被引量:1
  • 8Laurie D P. Computation of Gauss-type quadrature formulas [ J ]. Computationla and Applied Mathematics, 2001, 127:201 - 217 被引量:1
  • 9Milovanovic G V. Calculation of Gaussian-type quadratures with multiple nodes [A]. Spalevic M M, Cvetkovic A S. Mathematical and Computer Modelling [ C ]. 2004, 39: 325 - 347 被引量:1
  • 10Lether F G, Wenston P R. Minimax approximations to the zeros of Pn ( x ) and Gauss-Legendre quadrature [ J ]. Computational and Applied Mathematics, 1995, 59:245-252 被引量:1

共引文献27

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部