期刊文献+

基于SIRP法的相关韦布尔分布雷达杂波仿真 被引量:3

Simulation of Correlated Weibull Distribution Radar Clutter Based on SIRP Method
下载PDF
导出
摘要 推导了韦布尔分布参量满足的最大似然(ML)估计方程和其为球不变随机矢量(SIRV)的条件,给出了模拟相关韦布尔分布雷达杂波的原理和流程。在此基础上,基于球不变随机过程(SIRP)法仿真了具有高斯谱的韦布尔分布及其特例——瑞利和指数分布,弥补了零记忆非线性(ZMNL)法不能独立控制边缘概率密度函数(PDF)与相关函数的不足。最后不仅验证了模拟数据的PDF与理论分布,估计的功率谱与理论谱的吻合程度,而且分析了ML估计的分布参数与真实值之间的相对误差。结果表明,基于SIRP法仿真相关韦布尔分布雷达杂波是有效的。 This paper derives the maximum likelihood(ML) estimation equations and spherically invariant random vectors(SIRV) conditions for Weibull distribution parameters.The principles and flow of correlated Weibull distribution radar clutter simulation are given.On this basis,Weibull distribution and its special cases—Rayleigh and exponential distributions with Gaussian spectrum are simulated using spherically invariant random process(SIRP) method,which makes up the deficiency that zero memory nonlinearity(ZMNL) method cann't control the marginal probability density function(PDF) and correlation function independently.Finally,the agreement between the PDF of experimental data and the theoretical distribution and the agreement,between the estimated power spectrum and the theoretical power spectrum are compared and verified.The relative errors between the ML estimated distribution parameters and the truth-values are also analyzed.The result proves that the simulation of correlated Weibull distribution radar clutter based on SIRP method is effective.
出处 《雷达科学与技术》 2011年第3期253-258,共6页 Radar Science and Technology
基金 总装重点基金(No.9140A07050908)
关键词 球不变随机过程(SIRP) 相关韦布尔 ML估计 零记忆非线性(ZMNL) spherically invariant random process(SIRP) correlated Weibull ML estimation zero memory nonlinearity(ZMNL)
  • 相关文献

参考文献10

  • 1杨万海编著..雷达系统建模与仿真[M].西安:西安电子科技大学出版社,2007:270.
  • 2Marier I.J. Correlated K Distribution Clutter Genera tion for Radar Detection and Track[J]. IEEE Trans on Aerospace and Electronics Systems, 1995, 31(2): 568-580. 被引量:1
  • 3Peyton Z P. The Generation of Correlated Log Normal Clutter for Radar Simulations [J]. IEEE Trans on Aerospace and Electronics Systems, 1971, 7 (6) : 1215-1217. 被引量:1
  • 4Yao K. A Representation Theorem and Its Application m Spherically Invariant Processes[J]. IEEE Trans on Information Theory, 1973, 19(5):600-608. 被引量:1
  • 5Conte E, Longo M. Characterization of Radar Clutter as a Spherically Invariant Random Process[J]. IEEE Proceedings, Communication, Radar and Signal Processing, 1987, 134(2):191-197. 被引量:1
  • 6Rangaswamy M, Weiner D. Computer Generation of Correlated NonGaussian Radar Clutter [J]. IEEETrans on Aerospace and Electronics Systems, 1995, 31(1):106-115. 被引量:1
  • 7贺宏洲,景占荣,徐振华.相关Weibull分布雷达杂波的建模与仿真[J].计算机仿真,2009,26(7):23-25. 被引量:5
  • 8蔡宗平,刘山林.SIRP法学生t分布雷达杂波建模与仿真[J].雷达科学与技术,2008,6(3):174-177. 被引量:4
  • 9谢洪森,邹鲲,周鹏.相关非高斯分布雷达杂波仿真与验证[J].雷达科学与技术,2010,8(2):159-162. 被引量:2
  • 10何子述,夏威等编著..现代数字信号处理及其应用[M].北京:清华大学出版社,2009:384.

二级参考文献11

共引文献8

同被引文献19

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部