期刊文献+

模糊网络计划的工作时差计算方法研究 被引量:1

Study of calculation method of working float time in fuzzy network planning
下载PDF
导出
摘要 将三角模糊数引入到网络计划的时参计算中,应用三角模糊数加法运算定理计算模糊最早时间,应用Minkowski模糊减法运算定理计算模糊最迟时间和模糊时差。将模糊分布理论与线性规划理论相结合,建立求解模糊时差的线性规划模型,以克服时差计算中可能出现的模糊数为负值或模糊分布为非凸模糊数等无意义问题。与基于分层线性规划理论及模糊时差修正理论的计算方法相比较,该模型得到的模糊时差始终为正值,模糊分布为凸模糊数,并且计算量小。 The triangular fuzzy number was introduced into the calculation of the network planning,then the fuzzy early time was calculated by the theorem of triangular fuzzy number addition,the fuzzy late time and float time were calculated by the Minkowski subtraction.The fuzzy linear programming calculation model is proposed by fuzzy distribution theory and linear programming theory to overcome the non-frivolous issues,such as the negative number of fuzzy,the no-convened fuzzy distribution.By comparing the model based on hierarchical linear programming and the correction theory,the calculation results of the theory model show that the float time of fuzzy is positive,the fuzzy distribution is convened and the computation is smaller.
出处 《河北工程大学学报(自然科学版)》 CAS 2011年第2期68-70,90,共4页 Journal of Hebei University of Engineering:Natural Science Edition
关键词 模糊网络计划 三角模糊数 时差 Minkowski减法 线性规划 fuzzy network planning triangular fuzzy number float time Minkowski subtraction linear programming
  • 相关文献

参考文献11

二级参考文献17

  • 1冯允成.活动网络在随机约束下的关键路线问题[J].系统工程理论与实践,1994,14(5):42-51. 被引量:5
  • 2Chang I S,Fuzzy Sets Syst,1995年,76卷,277页 被引量:1
  • 3Kanmohammadi S, Rahimi F, Sharifian M B B. Analysis of different fuzzy CPM network planning procedures [ C ]//Proceedings of the 2003 10th IEEE International Conference on Electronics, Circuits, and Systems. Sharjah, United Arab Emirates, 2003 : 1074-1077. 被引量:1
  • 4McCabon C S. Using PERT as an approximation of fuzzy projection network analysis [ J ]. IEEE Transactions on Engineering Management, 1993, 40(2) : 146-153. 被引量:1
  • 5Stefan Chanas, Pawel Zielinski. Critical path analysis in the network with fuzzy activity times [ J ]. Fuzzy Sets and Systerns, 2001, 122(2) :195-204. 被引量:1
  • 6Stefan Chanas, Didier Dubois, Pawel Zielinski. On the sure criticality of tasks in activity networks with imprecise durations [ J ]. IEEE Transactions on Systems, Man, and Cybernetics (Part B), 2002, 32(4) : 393-407. 被引量:1
  • 7Didier Dubois, Helene Fargier, Vincent Galvagnon. On latest starting times and floats in activity networks with illknown durations [ J ]. European Journal of Operational Research, 2003, 147(2): 266-280. 被引量:1
  • 8Hapke M, Jaszkiewicz A, Slowinski R. Fuzzy project scheduling system for software development [ J ]. Fuzzy Sets and Systems, 1994, 67(1) :101-117. 被引量:1
  • 9Rommelfanger H J. Network analysis and information flow in fuzzy environment [ J]. Fuzzy Sets and Systems, 1994, 67(1): 119-128. 被引量:1
  • 10Chen Shyi-Ming, Chang Tao-Hsing. Finding multiple possible critical paths using fuzzy PERT [ J ]. IEEE Transactions on Systems, Man, and Cybernetics(Part B),2001,31 (6):930-937. 被引量:1

共引文献54

同被引文献15

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部