摘要
从二维粘弹性本构关系出发,通过微元体的受力平衡分析,经过一系列拉普拉斯变换,得到了粘弹性非保守矩形薄板在拉普拉斯变换形式下屈曲运动微分方程的一般表达式,该式适合于任一微分型粘弹性模型,可以退化为多种情况,具有广泛的通用性。
The universally differential equation of viscoelastic rectangular plates under the uniformly distributed follower forces is derived by the analysis of forces-balance of infinitesimal element and Laplace transform.The equation has extensive universality,and fits for every visoelasticity differential constitutive relation,in many cases,it can also degenerate into the other governing differential equation of motion of plates.
出处
《军事交通学院学报》
2011年第3期92-94,F0003,共4页
Journal of Military Transportation University
关键词
粘弹性
非保守板
拉普拉斯变换
屈曲运动微分方程
visoelasticity
non-conservative board
Laplace transform
buckling motion differential equation