期刊文献+

Banach空间脉冲微分方程整体解的存在性 被引量:1

Existence of Global Solutions for Impulsive Differential Equations in Banach Spaces
下载PDF
导出
摘要 利用Darbo不动点定理研究了Banach空间中一类含有无穷多个跳跃点的一阶脉冲微分方程初值问题,在较弱的条件下获得了其整体解的存在性. By using Darbo fixed point theorem, a kind of initial value problems for first order impulsive differential equations with infinite skip points in a Banach space was studied. And the existence of global solutions was obtained under weak conditions.
作者 汪子莲 丁珂
出处 《郑州大学学报(理学版)》 CAS 北大核心 2011年第3期22-26,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 甘肃省教育厅科研项目 编号0712B-02
关键词 正规锥 脉冲微分方程 非紧性测度 初值问题 normal cone impulsive differential equation measure of noncompactness initialvalue problems
  • 相关文献

参考文献9

  • 1Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations [ M ]. Singapore : World Scientific, 1989:2 - 18. 被引量:1
  • 2Sun Jingxian. Extremal solutions initial value problem for integro-differential of mixed type in Banach spaces [ J ]. Ann Diff Eqs, 1992,8( 1 ) :469 -475. 被引量:1
  • 3Guo Dajun, Liu Xinzhi. Extremal solutions of nonlinear impulsive integro-differential equations in Banach spaces [ J ]. J Anal Math Anal, 1993,177(2) :538 -553. 被引量:1
  • 4Liu Xinzhi, Guo Dajun. Initial value problems for first-order impulsive integro-differential equations on unbound domains in a Banach space [ J ]. Comm Appl Nonlinear Anal, 1995,2 ( 1 ) :65 - 83. 被引量:1
  • 5Martin J R H. Differential equations on closed subsets of a Banach space [ J ]. Trans Amer Math Aoc, 1973,17 (1) :399 -414. 被引量:1
  • 6Deiling K. On existence and uniqueness for differential equations[ J]. Ann Mat Pura Appl, 1975,106( 1 ) :1 -12. 被引量:1
  • 7郭大钧.非线性分析中的半序方法[M].济南:山东科技出版社,2000.. 被引量:84
  • 8Guo Dajun, Lakshmikantham V. Nonlinear in Abstract Cones [ M ]. San Diego: Academic Press, Inc, 1988 : 24 - 25. 被引量:1
  • 9杨洁,孟凤娟.一类二阶超二次哈密顿系统的周期解[J].郑州大学学报(理学版),2009,41(4):6-10. 被引量:1

二级参考文献6

  • 1Rabinowitz P H. Periodic solutions of Hamiltonian systems[J]. Comm Pure Appl Math,1978,31(2) :157-184. 被引量:1
  • 2Xu Xiangjing. Periodic solutions for non-autonomous Hamiltonian systems possessing super-quadratic potential[J]. Non linear Anal, 2002, 51(6).. 941-955. 被引量:1
  • 3Li Shujie, Szulkin A. Periodic solutions for a class of non autonomous Hamiltonian system [J]. J Diff Eq, 1994,112 (11 ) : 226-238. 被引量:1
  • 4Rabinowitz P H. Minimax Methods in Critical Theory with Applications to Differential Equations[M]. New York: American Mathematical Society,1986. 被引量:1
  • 5Fei Guihua. On periodic solutions of super quadratic Hamiltonian systems[EB/OL]. [2002-01-15]. http://ejde, math. swt. edu. 被引量:1
  • 6Mawhin J,Williem M. Critical Point Theory and Hamiltonian Systems[M]. Berlin: Springer Verlag, 1989. 被引量:1

共引文献83

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部