期刊文献+

GRNN在边坡稳定预测分析中的应用 被引量:10

Application of generalized regression neural network in prediction and analysis of slope stability
下载PDF
导出
摘要 介绍广义回归神经网络(GRNN)的原理和影响因素,论述光滑因子的影响和选择。采用LOO交叉验证方法遍历所有样本,搜索出合适的光滑因子,结果表明合适的光滑因子能够较大幅度地提高网络泛化能力。应用收集到的82个圆弧滑面边坡稳定状态的实例资料,将GRNN模型应用于边坡稳定性评价,计算结果表明,在边坡稳定状态分析及预测方面,GRNN模型比BPNN模型更加精准简捷。 The principles and influence factors of the algorithm of generalized regression neutral network(GRNN) were introduced.The influence and choice of the spread were discussed.The suitable value of the spread was searched out from all the samples according to the LOO across validity method.It was proved that the suitable value of the spread could greatly improve the generalization ability of the network.The method of GRNN was applied to the evaluation of slope stability of 82 examples.The results show that the GRNN model is simpler and more accurate than the BPNN models in prediction and analysis of slope stability.
出处 《水利水电科技进展》 CSCD 北大核心 2011年第3期80-83,共4页 Advances in Science and Technology of Water Resources
基金 国家自然科学基金(50979030 50911130366)
关键词 广义回归神经网络 光滑因子 边坡稳定预测 generalized regression neural network spread prediction of slope stability
  • 相关文献

参考文献7

二级参考文献33

共引文献124

同被引文献93

引证文献10

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部