期刊文献+

视频图像的车辆检测与识别 被引量:5

Video images vehicle detection and recognition
下载PDF
导出
摘要 提出了一种新方法,用来提取视频图像中车辆的候选区域。即将视频图像转换到HSV空间,利用H分量提取图像中红色区域位置,V分量提取图像中车底的水平边缘位置,两者结合确定图像中车辆的候选区域。然后,利用改进的Gabor滤波器组对图像中的候选区域特性进行提取,最后利用支持向量机对提取的候选区域特性进行训练、识别。滤波器组通过量子进化算法进行了改进,其中引入了小生境协同进化算法并对优化后的滤波器组进行聚类减少多余的滤波器,降低冗余度。仿真结果表明此方法提取候选区域更加精确、快速。改进后的量子进化算法收敛速度快,能够快速地找到最优解。 A new method is proposed to extract candidate regions from video images.In this method,video image is converted into HSV space,the red areas of video images are extracted by H components and horizontal edge of vehicle’s bottom by V components,then the candidate regions of vehicle can be determined by these two components.At the same time,optimized Gabor filters group is used to extract the characteristics of candidate regions,supported vector machine is used to train and recognize the selected characteristics.The filter group is improved by Quantum Evolutionary Algorithm(QEA),and niche cooperation evolution algorithm is introduced at this,also the improved filter group is clustered to reduce redundancy. Experiments show that this method is more accurate and faster,the improved Quantum Evolutionary Algorithm converges rapidly,so the optimal solution can be found quickly.
作者 周涛 张继业
出处 《计算机工程与应用》 CSCD 北大核心 2011年第19期166-169,共4页 Computer Engineering and Applications
基金 教育部博士点基金资助(No.200806130003)
关键词 车辆检测 GABOR滤波器 量子进化算法 支持向量机 vehicle detection Gabor filter Quantum Evolutionary Algorithm(QEA) Support Vector Machine(SVM)
  • 相关文献

参考文献14

  • 1崔文兵.美、欧、日智能交通系统的发展[J].世界汽车,1999,1. 被引量:1
  • 2Sun Zehang, Bebis G, Miller R.On road vehicle detection: A re- view[J].IEEE Trans Pattern and Machine Intelligence, 2006, 28 (5) :694-711. 被引量:1
  • 3Sun Zehang, Bebis G, Miller R,On-road vehicle detection using evolutionary Gabor filter optimization[J].IEEE Trans Pattern and Machine Intelligence, 2005,6(2) : 125-137. 被引量:1
  • 4Parodi P, Piccioli G.A feature-based recognition scheme for traffic scenes[J].IEEE Intelligent Vehicles,1995:229-234. 被引量:1
  • 5Handmann U, Kalinke T, Tzomakas C, et al.An image processing system for driver assistance[J].Image and Vision Computing,2000,18(5) :367-376. 被引量:1
  • 6Matthews N,An P,Chamley D,et al.Vehicle detection and recognition in grayscale imagery[J].Control Engineering, 1996,4(4) : 473-479. 被引量:1
  • 7Wang C C R, Lien J J J.Automatic vehicle detection using local features-A statistical approach[C]//18th IPPR Conference on Computer Vision, Graphics and Image Processing, 2005: 1813-1820. 被引量:1
  • 8Li B B, Wang L A.Hybrid quantum-inspired genetic algorithm for multi-objective flow shop scheduling[J].IEEE Trans on Sys- tems, Man and Cybernetics, 2007,37 (3) : 576-591. 被引量:1
  • 9Yang Shuyuan, Wang Min, Jiao Licheng.A novel quantum evolutionary algorithm and its application[C]//IEEE Congress on Evolutionary Computation, 2004,1 : 820-826. 被引量:1
  • 10张超 张家树 陈辉.一种新的量子进化规划算法及其应用.计算机科学,2004,:231-233. 被引量:1

二级参考文献23

共引文献157

同被引文献36

  • 1宋维明.国外智能交通系统建设模式综述及其启示[J].电子技术(上海),2006,33(12):19-22. 被引量:7
  • 2Hart Deguang.The existence of tight Gabor duals for Gabor frames and subspace Gabor frames[J].Joumal of Functional Analysis, 2009,256:129-148. 被引量:1
  • 3Unser M.Local linear transforms for texture measurements[J]. Signal Process, 1986,11 ( 1 ) : 61-79. 被引量:1
  • 4Fukunaga K.Statistical pattern recognition[M].2nd ed.San Diego CA: Academic, 1990. 被引量:1
  • 5Sfinivasan K, Dastoor P H, Radhakrishnaiah P, et al.FDAS: a knowledge-based framework for analysis of defects in woven textile structures[J].J Text Inst, 1992,83(3) :431-448. 被引量:1
  • 6Sari-Sarraf H, Goddard J S.Vission systems for on-loom fabric inspection[J].IEEE Trans on Ind Appl, 1999,35:1252-1259. 被引量:1
  • 7Kumar A.Computer-vision-based fabric defect detection:a survey[J]. IEEE Transactions on Industrial Electronics,2008,55( 1 ):348-363. 被引量:1
  • 8Mark K L, Peng P.An automated inspection system for textile fabric based on Gabor filters[J].Robotics and Computer-Integrated Manufacturing, 2008,24: 359-369. 被引量:1
  • 9Mak K L, Peng P, Yiu K F C.Fabric defect detection using morphological filters[J].Image and Vision Computing, 2009, 27:1585-1592. 被引量:1
  • 10Kurnar A.Automated inspection of textured web materials using real Gabor function[C]//Proc 2nd SPIE ICIG,Hefei,China,2002: 59-62. 被引量:1

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部