期刊文献+

StreamQCTree:一种流数据方压缩结构 被引量:1

StreamQCTree:efficient compression structure for streamcube
下载PDF
导出
摘要 数据流管理系统计算聚集查询结果保存在内存中形成流数据方(StreamCube),提供快速、精确的在线OLAP查询。有限的内存空间需要一种有效的存储方法来存储更大时间窗口的流数据方。提出一种基于QC-Tree结构的流数据方StreamQCTree生成、裁剪及查询方法。将QC-Tree结构中上界集划分为基本上界类和附加上界类;并分析附加上界类的成本计算模型;根据该模型在固定存储空间下,采用动态选择物化结点的方案选择物化部分附加上界类,使对StreamQCTree的平均查询响应时间最小。实验表明,StreamQCTree能够有效地访问数据方且获得较好的压缩效果。 StreamCube,which responses OLAP queries fast and accurately,is in-memory and composed of Group-bys from DSMS.Becasue of limited capacity of memory,it needs an efficient structure to keep more information of StreamCube with more large time window.This paper presents a QCTree-based structure,StreamQCTree,with constructing,pruning and search algorithm.The upper bounds in QC-Tree are partitioned into two classes:Basic Upper Bounds(BUB) and Addition Upper Bounds(AUB),and cost model of AUB is analyzed.Using the cost model,a dynamic select approach is put forward to choose the AUBs with high cost-benefit in fixed memory,which gains less average response time for all queries in StreamQCTree.Experiments show that StreamQCTree performs well in compressing StreamCube and make queries efficiently.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第19期140-143,185,共5页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)No.2007AA01Z474 No.2007AA010502~~
关键词 网络安全事件监控 StreamQCTree 流数据方 数据压缩 联机分析处理 QC-Tree network security events monitor StreamQCTree stream cube data compression On-Line Analytical Processing (OLAP) QC-Tree
  • 相关文献

参考文献11

  • 1Han J,Chen Y, Dong G, et al.Stream cube:An architecture for multi-dimensional analysis of data streams[J].Distributed and Parallel Databases,2005,18(2): 173-197. 被引量:1
  • 2Harinarayan V, Rajaraman A, Ullman J D.Implementing data cubes efficiently[C]//Proc of the 1996 ACM SIGMOD Interna- tional Conference on Management of Data.Montreal, Canada: ACM, 1996:205-216. 被引量:1
  • 3Lakshrnanan L, Pei J, Zhao Y.QC-trees: An efficient summary structure for semantic OLAP[C]//Proe of the 2003 ACM SIG- MOD International Conference on Management of Data.Califor- nia-ACM,2003:64-75. 被引量:1
  • 4Wang W, Lu H,Feng J,et al.Condensed cube:An effective ap- proach to reducing data cube size[C]//Proe of the 2002 Interna- tional Conference on Data Engineering, San Fransisco,CA,2002: 155-165. 被引量:1
  • 5Sismanis Y, Roussopoulos N, Deiigiannakis A, et al.Dwarf: Shrinking the petacube[C]//Proc of the 2002 ACM-SIGMOD In- ternational Conference Management of Data, Madison, Wiscon- sin, 2002 : 464-475. 被引量:1
  • 6李盛恩,王珊.封闭数据立方体技术研究[J].软件学报,2004,15(8):1165-1171. 被引量:25
  • 7王栩,李建中,王伟平.基于滑动窗口的数据流压缩技术及连续查询处理方法[J].计算机研究与发展,2004,41(10):1639-1644. 被引量:17
  • 8Cho M,Pei Jian, Wang Ke.Answering ad hoc aggregate queries from data streams using prefix aggregate trees[J].Knowledge and Information Systems, 2006,12 ( 3 ) : 301-329. 被引量:1
  • 9李红松,黄厚宽.PMC: Select Materialized Cells in Data Cubes[J].Journal of Computer Science & Technology,2006,21(2):297-304. 被引量:2
  • 10谭红星,周龙骧.多维数据实视图的动态选择[J].软件学报,2002,13(6):1090-1096. 被引量:35

二级参考文献34

  • 1S Guha, N Koudas. Approximating a data stream for querying and estimation: Algorithms and performance evaluation. The 18th Int'l Conf on Data Engineering (ICDE), San Jose, California,2002 被引量:1
  • 2S Acharya, P B Gibbons, V Poosala, et al. Join synopses for approximate query answering. The 1999 ACM SIGMOD Int'l Conf on Management of Data, Philadelphia, Pennsylvania, 1999 被引量:1
  • 3S Chaudhuri, R Motwani, V Narasayya. On random sampling over joins. The 1999 ACM SIGMOD Int'l Conf on Management of Data, Philadelphia, Pennsylvania, 1999 被引量:1
  • 4N Alon, Y Matias, M Szegedy. The space complexity of approximating the frequency moments. The 28th Annual ACM Symp on Theory of Computing, Philadelphia, Pennsylvania, 1996 被引量:1
  • 5P Flajolet, G Martin. Probabilistic counting. The 24th Annual IEEE Symp on Foundations of Computer Science, Tucson,Arizona, 1983 被引量:1
  • 6Brian Babcock, Shivnath Babu, Mayur Datar. Models and issues in data stream system. ACM SIGMOD/PODS 2002 Conf,Madison, Winsconsin, 2002 被引量:1
  • 7J Kang, J Naughton, S Viglas. Evaluating window joins over unbounded stream. The 19th Int'l Conf on Data Engineering,Bangalore, India, 2003 被引量:1
  • 8Lukasz Golab, M Tamer Ozsu. Processing sliding window multijoins in continuous queries over data streams. Waterloo University, Tech Rep: CS-2003-01, 2003 被引量:1
  • 9Y Zhu, D Shasha. StatStream: Statistical monitoring of thousands of data streams in real time. The 28th Int' l Conf on Very Large Data Bases, Hong Kong, 2002 被引量:1
  • 10M Datar, A Gionis, P Indyk, et al. Maintaining stream statistics over sliding windows. The 13th Annual ACM-SIAM Symp on Discrete Algorithms, San Francisco, California, 2002 被引量:1

共引文献74

同被引文献6

  • 1Chien J T,Wu C C.Discriminant waveletfaces and nearest feature classifiers for face recognition [J].IEEE Trans.on PAMI,2002,24(12): 1644-1649. 被引量:1
  • 2ZHENG Wen-ming,ZOU Cai-rong,ZHAO Li.Face Recogniti- on using two novel nearest neighbor classifiers [C]// Proceedings of ICASSP,2004:725-728. 被引量:1
  • 3Roy P,Seshadri S,Sudarshan S,et al.Efficient and Extensible algorithms for multi query optimization [C].//Proceedings of the 19th ACM SIGMOD International Conference on Management of Data,2000:249-260. 被引量:1
  • 4Lakshmanan LVS,PEI Jian,ZHAN Yan .QC-trees:An efficient summary structure for semantic OLAP [C].//Proc of the 2003 ACM SIGMOD International Conference on Management of Data,2003:64-75. 被引量:1
  • 5Sismanis Y,Deligiannakis A,Roussopoulos N,et al.Dwarf shrinking the petacube [C].//Proc of the 2002 ACM-SIGMOD international conference management of data,2002:464-475. 被引量:1
  • 6Harinarayan V, Rajaraman A,Ullman J D.Implementing data cubes efficiently [C]//Proc of the 1996 ACM SIGMOD International Conference on Management of Data,1996:205- 216. 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部