期刊文献+

解决几何约束系统的非刚性簇改写方法

Non-rigid cluster rewriting approach to solve systems of geometric constraints
下载PDF
导出
摘要 提出一种新的解决几何约束系统的构造求解方法。这是一种基于簇改写的求解器,新的解决方法扩展了可被解决的问题的种类,保持了簇改写方法的优点。相比先前的簇改写求解器只确定了刚性簇以及两种非刚性簇,也就是有着特定的自由度的簇。许多不能被分解为刚性簇的问题得以解决,而不用求助于那些复杂的代数解决方法。 This paper presents a new constructive solving approach for systems of geometric constraints.The solver is based on the cluster rewriting approach.The new solving approach extends the class of problems that can be solved,while retaining the advantages of the cluster rewriting approach.Whereas previous cluster rewriting solvers only determine rigid clusters,two types of non-rigid clusters are determined,i.e.clusters with particular degrees of freedom.Many additional problems that cannot be decomposed into rigid clusters are solved,without resorting to expensive algebraic solving methods.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第18期179-182,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60173055)~~
关键词 几何约束求解 簇改写 刚性簇 可扩展簇 放射性簇 geometric constraint solving cluster rewriting rigid clusters scalable clusters radial clusters
  • 相关文献

参考文献8

  • 1Joan-Arinyo R,Soto A,Vila-Marta S,et al.Revisiting decomposi- tion analysis of geometric constraint graphs[J].Computer-Aided Design,2004,36(2) : 123-140. 被引量:1
  • 2Durand C, Hoffmann C M.A systematic framework for solving geometric constraints analytically[J].Joumal of Symbolic Compu- tation, 2000,30 ( 5 ) : 493 -519. 被引量:1
  • 3Hoffmann C M, Lomonosov A, Sithamm M.Decomposition plans for geometric constraint systems, part I: performance measures for CAD[J].Jottmal of Symbolic Computation, 2001,31 (4) : 376-408. 被引量:1
  • 4Sitharam M.Wellformed systems of point incidences for resolv- ing collections of rigid bodies[J].Intemational Journal of Compu- tational Geometry and Applications, 2006,16(5) : 591-615. 被引量:1
  • 5Hoffxnann C M, Lomonosov A, Sitharam M.Decomposition plans for geometric constraint systems,part II:ncw algorithms[J].Jour- nal of Symbolic Computation,2001,31(4):409-427. 被引量:1
  • 6Gao X, Lin Q, Zhang G.A C-tree decomposition algorithm for 2D and 3D geometric constraint solving[J].Computer-Aided Design, 2006,38 ( 1 ) : 1-13. 被引量:1
  • 7Podgorelec D.A new constructive approach to constraint-based geometric design[J].Computer-Aided Design,2002,34(ll):769-785. 被引量:1
  • 8Schreck P, Schramm E.Using invariance under the similarity group to solve geometric constraint systems[J].Computer-Aided Design, 2006,38 ( 5 ) : 475-484. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部