摘要
遗传算法算法原理简单明了,在计算极值方面有其竞争优势,可以方便地逃离局部最优解达到全局最优解。算法运行的核心是适应度函数,起引导算法优化指向的作用。提出一种多属性遗传算法适应度描述算法,从而使得现实中的推理问题可以利用遗传算法的求优能力来解决,试验证明它具有很强的可行性和实用性。
The genetic algorithm algorithm principle is simply, and has the competitive advantage in the computation extreme value aspect. May facilitate flees the partial optimal solution to achieve the globally optimal solution. The algorithm movement's core is the sufficiency function, and has the function that guides the direction of algoritym optimization. Proposes a kind of muhiattribute genetic sufficiency description algorithm, thus causes the inference question in the reality to be solved by using the superior ability of genetic algorithm, and the experiment proves that it has the very strong feasibility and usability.
出处
《现代计算机》
2011年第11期25-29,共5页
Modern Computer
关键词
遗传算法
多属性
推理
极值
Genetic Algorithm (GA)
Muhiattribute
Inference
Extreme Value