期刊文献+

基于核映射的高阶Takagi-Sugeno模糊模型 被引量:1

Higher-order Takagi-Sugeno fuzzy model based on kernel mapping
下载PDF
导出
摘要 本文研究规则后件为非线性函数的高阶Takagi-Sugeno(TS)模糊系统.为求解规则后件的函数表达式,首先通过一个核映射将原输入空间映射到高维特征空间,使原空间的非线性子模型转化为高维特征空间的线性子模型,获得了规则后件的非线性函数的计算公式.然后,给出了用核模糊聚类和最小二乘支持向量机设计模糊系统的一种新算法.最后通过4个公开数据集上的仿真实验验证了所提算法的逼近能力、推广能力和鲁棒性能. This paper is concerned with higher-order Takagi-Sugeno(TS) fuzzy systems,where the consequent of a fuzzy rule is a nonlinear combination of input variables.To solve this problem,an implicit nonlinear kernel-mapping is introduced to map the original input space to some higher dimensional feature space,where locally nonlinear submodels of TS fuzzy systems are transformed into locally linear submodels;and then,the expressions of the consequent functions are presented.Furthermore,a novel algorithm of designing higher-order TS fuzzy systems is developed by combining the kernel-based fuzzy clustering with least squares support-vector-machines(LSSVM).Finally,the approximation accuracy,the generalization ability and robustness of the proposed algorithm have been demonstrated by simulation experiments on four well-known data sets.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第5期681-687,共7页 Control Theory & Applications
基金 国家自然科学基金资助项目(60433020 10471045 61070033) 广东省自然科学基金资助项目(031360 04020079) 广东省自然科学基金重点项目(9251009001000005)
关键词 模糊系统 模糊聚类 支持向量机 核函数 fuzzy systems fuzzy clustering support-vector-machine kernel function
  • 相关文献

参考文献19

  • 1CHEN Y X, WANG J Z. Support vector learning for fuzzy rule-based classification systems[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(6): 716 - 728. 被引量:1
  • 2CHEN Y X, WANG J Z. Kernel machines and additive fuzzy sys- tems: classification and function approximation[C]//Proceedings of the 12th IEEE International Conference on Fuzzy Systems. St. Louis, Missouri: IEEE, 2003, 2:789 - 795. 被引量:1
  • 3CHIANG J H, HAO P Y. Support vector learning mechanism for fuzzy rule-based modeling: a new approach[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(1): 1 - 12. 被引量:1
  • 4字正华,赵爽,王光昶.模糊逻辑系统与支持向量机的关系探索[J].计算机工程,2004,30(21):117-119. 被引量:2
  • 5LESKI J K. On support vector regression machines with linguistic interpretation of the kernel matrix[J]. Fuzzy Sets and Systems, 2006, 157(8): 1092-1113. 被引量:1
  • 6蔡前凤,郝志峰,刘伟.基于模糊划分和支持向量机的TSK模糊系统[J].模式识别与人工智能,2009,22(3):411-416. 被引量:8
  • 7蔡前凤,郝志峰,杨晓伟.基于最小二乘支持向量机的TSK模糊模型[J].华南理工大学学报(自然科学版),2009,37(5):130-134. 被引量:2
  • 8DEMIRLI K, MUTHUKUMARAN P. Higher order fuzzy system identification using subtractive clustering[J]. Journal of Intelligent and Fuzzy Systems, 2000, 9(3): 129- 158. 被引量:1
  • 9COCOCCIONI M, LAZZERINI B, MARCELLONI E Estimating the concentration of optically active constituents of seawater by Takagi-Sugeno models with quadratic rule consequents[J]. Pattern Recognition, 2007, 40(10): 2846 - 2860. 被引量:1
  • 10OH S K, PEDRYCZ W, ROH S B. Genetically optimized fuzzy poly- nomial neural networks with fuzzy set-based polynomial neurons[J]. Information Sciences, 2006, 176(23): 3490 - 3519. 被引量:1

二级参考文献36

  • 1Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control [ J]. IEEE Transactions on Systems, Man and Cybernetics, 1985,15 ( 1 ) : 116-132. 被引量:1
  • 2Sugeno M, Kang G T. Structure identification of fuzzy model [ J]. Fuzzy Sets and Systems, 1988,28 : 15-33. 被引量:1
  • 3Jin Tsong J, Tsu Tain L. Support vector machines for the fuzzy neural networks [ C ]//Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. Tokyo : IEEE, 1999 : 115-120. 被引量:1
  • 4Kim J, Won S. New fuzzy inference system using a support vector machine [ C]//Proceedings of the 41st IEEE Conferece on Decision and Control. Las Vegas: IEEE,2002: 1349-1354. 被引量:1
  • 5Lin C T,Yeh C M,Liang S F,et al. Support-vector-based fuzzy neural network for pattern classification [ J ]. IEEE Transactions on Fuzzy Systems,2006,14( 1 ) :31-41. 被引量:1
  • 6Celikyilmaz A, Burhan Turksen I. Fuzzy functions with support vector machines [ J ]. Information Sciences ,2007, 177:5163-5177. 被引量:1
  • 7Chen Y X, Wang J Z. Support vector learning for fuzzy rule-based classification systems [ J ]. IEEE Transactions on Fuzzy Systems ,2003,11 (6) :716-728. 被引量:1
  • 8Chen Y X,Wang J Z. Kernel machines and additive fuzzy systems : classification and function approximation [ C ] // Proceedings of the 12th IEEE International Conference on Fuzzy Systems. St Louis : IEEE,2003:789-795. 被引量:1
  • 9Leski J K. Neuro-fuzzy system with learning tolerant to imprecision [ J ]. Fuzzy Sets and Systems, 2003,138 : 427-439. 被引量:1
  • 10Leski J K. On support vector regression machines with linguistic interpretation of the kernel matrix [ J ]. Fuzzy Sets and Systems ,2006,157 : 1092-1113. 被引量:1

共引文献10

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部