期刊文献+

基于Markov网络团的信息检索扩展模型 被引量:3

Extended information retrieval model based on the Markov network cliques
原文传递
导出
摘要 全局分析方法是一种常用而能有效改善信息检索效果的查询扩展方法。通过计算词间相似度构造M arkov网络模型;然后由此模型加强候选词集中的词相关性描述,并提取了在Markov网络中词间的团结构;通过在查询中加入查询词所在团中的其他候选词进行查询扩展。实验表明基于Markov网络团的信息检索模型的检索效果优于基于一般的相似性矩阵查询扩展的检索效果;基于团提取方法的查询扩展的检索效果优于普通的基于提取方法的查询扩展检索效果。 Query expansion based on global analysis model is a common and effective approach to improve information retrieval performance. First, the Markov network model was built by calculating the similarity between terms. Second, the description of relationship between candidate terms was strengthened, and the clique structure was extracted from the Markov network. Finally, candidate terms and query terms in the clique structure were merged for query expansion. Ex- perimental results showed that query expansion based on the Markov random walk matrix performs better than query ex- pansion based on the similarity matrix, and query expansion based on the clique extraction method performs better than query expansion based on the general extraction method.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第5期54-57,62,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(60963014) 江西省自然科学基金资助项目(2008GZS0052)
关键词 查询扩展 全局分析 MARKOV网络 团结构 query expansion global analysis Markov network clique
  • 引文网络
  • 相关文献

参考文献9

  • 1刘挺等编著..信息检索系统导论[M].北京:机械工业出版社,2008:258.
  • 2XU Jinxi, CROFT W B. Query expansion using local and global document analysis [ C ]// Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 1996: 4-11. 被引量:1
  • 3CALLAN J, CROFT W B, BROGLIO J. TREC and TIP- STER experiments with inquery [ J 1. Information Process- ing and Management, 1995, 31 (3) :327-343. 被引量:1
  • 4JING Yufeng, CROFT W B. An association thesaurus for information retrieval[R]. Amherst: Department of Com- puter Science, University of Massachusetts, 1994 : 146- 160. 被引量:1
  • 5SCHUITZE H, PEDERSEN J O. A based thesaurus and two applications to information retrieval [ J]. Information Processing and Management, 1994, 33 (3) :266-274. 被引量:1
  • 6QIU Yonggang, FREI H P. Concept based query expan- sion[ C ]// Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 1993: 160-169. 被引量:1
  • 7左家莉,王明文,王希.基于Markov网络的信息检索扩展模型[J].清华大学学报(自然科学版),2005,45(S1):1847-1852. 被引量:9
  • 8甘丽新,王明文,张华伟.基于团的Markov网络信息检索模型[C]..第四届全国搜索引擎和网上信息挖掘学术研讨会.济南:山东大学自然科学学报编辑部,2006.. 被引量:1
  • 9PORTER M F. An algorithm for suffix stripping [J]. Program, 1980, 14(3) :130-137. 被引量:1

二级参考文献2

共引文献8

同被引文献37

  • 1王瑞琴,孔繁胜.基于无导词义消歧的语义查询扩展[J].情报学报,2011,30(2):131-137. 被引量:4
  • 2丁国栋,白硕,王斌.一种基于局部共现的查询扩展方法[J].中文信息学报,2006,20(3):84-91. 被引量:44
  • 3曹瑛,王明文,陶红亮.基于Markov网络的检索模型[J].山东大学学报(理学版),2006,41(3):101-105. 被引量:5
  • 4左家莉.信息检索中Markov网络图模型研究[D].南昌:江西财经大学,2011. 被引量:1
  • 5Metzler D, Croft W B. Latent concept expansion using Mar- kov random fields[C]//Proceedings of the 30th Annual Inter- national ACM SIGIR Conference on Research and Develop- ment in Information Retrieval (SIGIR '07), Amsterdam, Jul 23-27, 2007. New York, NY, USA: ACM, 2007:311-318. 被引量:1
  • 6Lin Yuan, Lin Hongfei, Jin Song, et al. Social annotation in query expansion: a machine learning approach[C]//Pro- ceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '11), Beijing, China, Jul 24-28, 2011. New York, NY, USA: ACM, 2011: 405-414. 被引量:1
  • 7Maxwell K T, Crota W B. Compact query term selection using topically related text[C]//Proceedings of the 36th Interna- tional ACM SIGIR Conference on Research and Develop- ment in Information Retrieval (SIGIR '13), Dublin, Ireland, Ju128-Aug l, 2013. New York, NY, USA: ACM, 2013:583-592. 被引量:1
  • 8Gao Jianfeng, Xu Gu, Xu Jinxi. Query expansion using path- constrained random walks[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '13), Dublin,Ireland, Jul 28-Aug 1, 2013. New York, NY, USA: ACM, 2013: 563-572. 被引量:1
  • 9Cao Guihong, Nie Jianyun, Gao Jianfeng, et al. Selecting good expansion terms for pseudo-relevance feedback[C]// Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '08), Singapore, Jul 20-24, 2008. New York, NY, USA: ACM, 2008: 243-250. 被引量:1
  • 10Lavrenko V, Croft W B. Relevance based language models[C]// Proceedings of the 24th Annual International ACM S1GIR Conference on Research and Development in Information Retrieval (SIGIR '01), New Orleans, USA, Sep 2001. New York, NY, USA: ACM, 2001: 120-127. 被引量:1

引证文献3

二级引证文献9

;
使用帮助 返回顶部