摘要
设Mn是复射影空间CPn2+p中具有平坦法丛的一般极小子流形.该文研究了这种子流形的曲率性质与几何性质之间的关系.运用活动标架法,得到关于Ricci曲率和第二基本形式模长的刚性定理,完善了已有文献的相关结果.此外,该文还得到具有平坦法丛的一般子流形一个重要性质.
Let Mn be generic minimal submanifold in a complex projective space CP n2+p.In this paper,the authors study the relation between their properties of curvature and geometry of these types submanifolds.By using moving frame-method,the rigidity theorems on Ricci curvature and the length of second fundamental form are obtained which improve some results of the relevant literatures.Moreover,the authors also get an important property of generic submanifuld with flat normal bundle.
出处
《纯粹数学与应用数学》
CSCD
2011年第3期343-347,共5页
Pure and Applied Mathematics
基金
安徽省教育厅自然科学研究重点项目(KJ2008A05ZC)
关键词
复射影空间
一般子流形
极小子流形
平坦法丛
complex projective space
generic submanifold
minimal submanifold
flat norm bundle