期刊文献+

基于CVFDT的网络流量分类方法 被引量:2

Network Traffic Classification Method Based on Concept-adapting Very Fast Decision Tree
下载PDF
导出
摘要 针对网络流量数据大、动态变化性高的问题,提出一种基于数据流挖掘技术——概念自适应快速决策树(CVFDT)的网络流量识别方法。CVFDT适合处理流动数据,随数据样本分布的变化更新模型,并能处理概念漂移。在具有12个最优属性特征的网络流数据集上进行实验,结果表明,与朴素贝叶斯方法相比,CVFDT方法具有较好的分类效果和稳定性。 Considering Internet data stream dynamically in large volumes, this paper proposes a traffic classification method using data stream mining techniques, named Concept-adapting Very Fast Decision Tree(CVFDT). CVFDT is capable of processing dynamic datasets, coping with concept drift and updating the model catering to incoming data. The approach and naive Bayes method on network traffic data stream sets are tested, which has 12 significant attributes. Experimental result shows that the approach gets high performance on classification accuracy and spatial stability compared with naive Bayes method.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第12期101-103,共3页 Computer Engineering
关键词 流量分类 应用识别 概念自适应快速决策树 数据流挖掘 traffic classification application identification Concept-adapting Very Fast Decision Tree(CVFDT) data stream mining
  • 相关文献

参考文献1

二级参考文献6

  • 1Moore A W, Zuev D. Intemet Traffic Classification Using Bayesian Analysis Techniques[J]. Performance Evaluation, 2005, 33(1): 50-60. 被引量:1
  • 2Erman J, Mahanti A, Arlitt M, et al. Offline/Realtime Traffic Classification Using Semi-supervised Learning[J]. Performance Evaluation, 2007, 64(9-12): 1194-1213. 被引量:1
  • 3Hettich S, Bay S D. The UCI KDD Archive[EB/OL]. (1999-10-20). http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. 被引量:1
  • 4Dy J G, Brodley C E. Feature Selection for Unsupervised Learning[J]. The Journal of Machine Learning Research, 2004, 5(1): 845-889. 被引量:1
  • 5Pal N R, Bezdek J C. On Clustering for the Fuzzy C-means Model[J]. Proc. of the IEEE, 1995, 31(3): 370-379. 被引量:1
  • 6Mori T, Uchida M, Kawahara R, et al. Identifying Elephant Flows Through Periodically Sampled Packets[C]//Proc. of IMC'04. Taormina, Italy: [s. n.], 2004: 115-120. 被引量:1

共引文献4

同被引文献14

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部