期刊文献+

基于遗传算法的伺服系统摩擦模型参数辨识 被引量:7

The Friction Model Parameters Identification of Servo System Based on Genetic Algorithm
下载PDF
导出
摘要 文章研究受摩擦因素影响的伺服系统的摩擦模型参数辨识问题,该系统具有未知负载特性和非线性摩擦,给摩擦模型参数辨识带了较大的困难。首先将系统的输入力矩分解为线性力矩和非线性摩擦力矩,其中线性力矩部分用于驱动负载转动,非线性摩擦力矩用于克服摩擦作用;然后基于Stribeck摩擦模型,采用遗传算法进行参数优化。在直流伺服系统上的仿真结果显示了该方法的有效性。该辨识方法对系统已知信息要求较少且容易实现,具有很强的工程实用价值。 In this paper,the friction model parameter identification problem of DC servo system affected by friction is studied.The identification of friction model parameters has great difficulties due to the existence of unknown load characteristics and nonlinear friction.The input torque is divided into linear torque and nonlinear friction torque firstly.The linear torque is used to drive the load rotation and the nonlinear friction torque is used to overcome friction.Then,the genetic algorithm is used for parameter optimization based on Stribeck friction model.Simulation results from DC servo system show the effectiveness of the proposed method.The identification method presents strong practical value because of fewer requirements for known information and easy implementation.
出处 《仪表技术》 2011年第6期34-36,共3页 Instrumentation Technology
关键词 摩擦 参数辨识 伺服系统 friction parameter identification servo system
  • 相关文献

参考文献5

二级参考文献14

  • 1李秀英,韩志刚.非线性系统辨识方法的新进展[J].自动化技术与应用,2004,23(10):5-7. 被引量:33
  • 2周擎坤,范大鹏,张智永.摩擦对稳定跟踪平台低速性能影响的研究[J].机械与电子,2005,23(12):21-23. 被引量:5
  • 3[1]Armstrong- Hélouvry B, Dupont P, Canudas de Wit C. A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction[J]. Autmatica, 1994,30(7): 1083- 1138. 被引量:1
  • 4[2]Praveen Vedagarbha,Dawson Darren M,Matthew Feemster. Tracking Control of Mechanical Systems in the Presence of Nonlinear Dynamic Friction Effects[J]. IEEE Trans. Control System Technology, 1997, 7(4): 446-456. 被引量:1
  • 5[3]Comput Kamopp D. Computer Simulation of Stickslip Friction in Mechanical Dynamic Systems [ J ]. ASME J. Dynamic Systems,Measurement and Control, 1985, 107: 100- 103. 被引量:1
  • 6[4]Canudas de Wit C, Olsson H, Astrom K J, et al. A New Model for Control of Systems with Friction[J]. IEEE Trans. Automaic Control,1995, 40(3): 419-425. 被引量:1
  • 7[5]Lischinsky P, Canudas de Wit C, Morel G. Friction Compensation for Industrial Hydraulic Robot[J].IEEE.Control System Magazine, 1999(2). 被引量:1
  • 8[6]Canudas de Wit C, Lischinsky P. Adaptive Friction Compensation with Partially Known Dynamic Friction Model[J]. Int. J. Adaptive Control and Signal Processing, 1997(11): 65-80. 被引量:1
  • 9[7]Leether Yao, Sethares William A. Nonlinear Parameter Estimation via the Genetic Algorithm[ J ]. IEEE Trans. Signal Processing, 1994, 42 (4):927 - 935. 被引量:1
  • 10[2]Olson H,Astrom K J,Canudas de Wit C,et al.Friction models and friction compensation.European Journal of Control,1998,(4):76-114 被引量:1

共引文献27

同被引文献70

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部