期刊文献+

基于最小二乘的多特征概率数据关联EM方法 被引量:3

Expectation Maximization Algorithm for Multi-Feature Aided Probabilistic Data Association Based on Least Square
下载PDF
导出
摘要 提出了一种多目标多特征信息的数据关联算法。在强噪声密集杂波环境下,针对传统PDA算法对多目标跟踪时出现精度较差的问题,在跟踪过程中融入目标的特征状态信息,利用期望极大化(EM)算法对目标状态估计的最小二乘(LS)误差函数迭代求最小,将目标运动状态和特征联合的关联概率作为估计参数不断修正,从而获得对目标状态的最优估计。仿真结果表明,该算法能够增强区分目标和杂波的能力,减小相近特征量测所引起的跟踪误导,弱化对检测概率的依赖性,显著并稳定地提高对目标的跟踪精度。 A multi-feature aided probabilistic data association is developed in this paper.In the environment of high noise and high-density clutter,tracking multi-target used standard PDA algorithm may occur a poor association accuracy.Aiming at this problem, we incorporate target feature information into the tracking process,and use the expectation maximization(EM)algorithm to compute the least square's error function of estimating target states iteratively.Via gradually modifying the estimated parameters that are target states and multi-feature aided associated probabilities,the target states could be estimated more accurately.The simulated results show that the new algorithm can strengthen the discrimination between targets and clutter,reduce the missed tracking or false tracking due to similar feature information,weaken the dependence on the probability of detection,and improve the estimated accuracy of target states significantly.
出处 《信号处理》 CSCD 北大核心 2011年第5期690-696,共7页 Journal of Signal Processing
基金 自然科学基金民航联合基金重点项目(60736045) 国家自然科学基金委与中国工程物理研究院资助项目(10776003)
关键词 期望极大化(EM) 最小二乘 多特征信息 目标跟踪 Expectation Maximization(EM) Least Square(LS) multi-feature target tracking
  • 相关文献

参考文献21

  • 1Y.Bar-Shalom,T.E.Fortmann.Tracking and Data Association,Academic Press,1988. 被引量:1
  • 2X.Wang,L.Scala,R.Ellem.Feature Aided Probabilistie Data Association for Multi-Target Tracking.2008 11 th International Conference on Information Fusion,2008:1-7. 被引量:1
  • 3Xuezhi Wang,D.Musicki,R.Ellem,F.Fletcher.Efficient and Enhanced Multi-Target Tracking with Doppler Measurements.IEEE Transaction on Aerospace and Electronic Systems,2009,Vol.45(4):1400-1417. 被引量:1
  • 4X.Wang,D.Musicki,R.Ellem,et al.Enhanced multitarget tracking with Dopplermeasurements.Proceedings of International Conference on Information,Decision and Control (IDC 2007),Adelaide,Australia,2007:53-58. 被引量:1
  • 5D.Musicki,B.La Scala.Multi-Target Tracking in Clutter without Measurement Assignment.IEEE Transaction on Aerospace and Electronic Systems,2008,Vol.44(3):877-896. 被引量:1
  • 6J.Schmitz,J.Greenewald.Model-based range extent for feature aided tracking.IEEE International Radar Conference,2000:166-171. 被引量:1
  • 7C.-Y.Chong,S.Mori.Metrics for feature-aided track association.Proceedings of the 9th International Conference on Information Fusion,Florence (Italy),2006:1-8. 被引量:1
  • 8Y.Ruan,L.Hong.Feature-aided tracking with GMTI and HRR measurements via mixture density estimation.IEEE Proceedings Control Theory and Applications,2006.Vol.153 (3):342-356. 被引量:1
  • 9H.Kameda,S.Tsujimichi,Y.Kosuge.Target tracking under dense environments using range rate measurements.Proceedings of the 37th SICE Annual Converence,International Session Papers,1998:927-932. 被引量:1
  • 10L.Avitzour.A Bayesian EM algorithm for optimal tracking of a maneuvering target in clutter.Signal Processing,2002,Vol.82(3):473-490. 被引量:1

二级参考文献14

  • 1陈永光.基于融合算法的双基地系统定位跟踪技术研究[国防科技大学研究生院博士论文].-,1995.. 被引量:1
  • 2Logothetis A. A Bayesian EM Algorithm for Optimal Tracking of a Maneuvering Target in Clutter[J]. Signal Processing, 2002, 82(3) :473-490. 被引量:1
  • 3Johnston L A. An Improvement to the Interacting Multiple Model (IMM) Algorithm[ J ]. IEEE Trans on SP, 2002, 49(12) : 2909-2923. 被引量:1
  • 4Bar-Shalom Y, Chang K C, Blom H A P. Automatic Track Formation in Clutter with a Recutsive Algorithm[M]. MA: Artech House INC, 1990. 25-42. 被引量:1
  • 5Blackman S S, Bush M T, Populi R F. IMM/MHT Tracking and Data Association for Benchmark Problem[A]. ACC1995[C]. Seattle:ACC, 1995. 2606-2612. 被引量:1
  • 6Hong Lang, Cui Ningzhou, Cong Shan, et al. An Interacting Multipattern Data Association (IMPDA) Tracking Algorithm[J]. Signal Processing, 1998, 71(4): 55-77. 被引量:1
  • 7陈永光,博士学位论文,1995年 被引量:1
  • 8孙仲康,雷达数据数字处理,1983年,350页 被引量:1
  • 9尹成友,通信学报,1999年,12卷,增刊20期,220页 被引量:1
  • 10康耀红,数据融合理论与应用,1997年 被引量:1

共引文献8

同被引文献19

  • 1林春应,王贵生,金耀星.雷达信号参数容差分析[J].舰船电子对抗,1997,20(4):27-31. 被引量:5
  • 2李合生,韩宇,蔡英武,陶荣辉.雷达信号分选关键技术研究综述[J].系统工程与电子技术,2005,27(12):2035-2040. 被引量:72
  • 3倪忠德,马宝华.海上编队多辐射源目标数据关联模型及仿真分析[J].探测与控制学报,2007,29(4):24-26. 被引量:5
  • 4Wang Hanzi, Suter D. Efficient visual tracking by proba- bilistic fhsion of multiple cues 2006[ J]. Pattern Recogni- tion, 2006. ICPR 2006. 18th International Conference on Volume:4 ) , 2006, 4(18) :892-895. 被引量:1
  • 5Dai Congxia. Layered Representation for Pedestrian De- tection and Tracking in Infrared Imagery [ J ]. Computer Vision And Pattern Recognition-Workshops, 2005. CVPR Workshops, 2005, 5 ( 5 ) : 13-13. 被引量:1
  • 6Wang J Q, Yagi Y S. Integrating color and shape texture features for adaptive real-time object tracking [ J ]. Image Processing, IEEE Transactions on ( Volume: 17, Issue: 2), 2008,17(2) :235-240. 被引量:1
  • 7Wang Qing, Xu Wenli, Ming-Hsuan Yang. Object Track- ing via Partial Least Squares Analysis [ J ]. IEEE Transac- tions on Image Processing, 2012, 21 (10) :4454-4465. 被引量:1
  • 8J. Kwon and K. Lee. Visual tracking decomposition[ J]. in Proc. IEEE Computer. Vis. Pattern Recognition. Conf. San Francisco CA Jun. , 2010, 5 (5) : 1269-1276. 被引量:1
  • 9Jan-Mark Geusebroek, Rein van den Boomgaard; Color in- variance[J]. In IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 12 December,2001. 被引量:1
  • 10Zhou I-Iong, Chen Yiru, Feng Rong. A novel background subtraction method based on color invariants [ J ]. Computer Vision and hnage Understanding, 2013, 117(1) :1589-1597. 被引量:1

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部