期刊文献+

抛物微分方程线性有限元参数识别的计算

The Linear Finite Element of Parameter Identification in Parabolic Partial Differential Equation
下载PDF
导出
摘要 研究了一类带有控制参数的抛物型偏微分方程的数值解的求解方法。首先通过相应的变换,将含有两个未知函数的方程转化为只含有一个未知函数的形式,然后对其在空间上运用Galerkin有限元半离散而时间上进行后向差分后,得到了一个求解变换后方程的高精度全离散单步格式,并获得很好的参数识别。最后给出的数值例子验证了所给的数值方法。 In this paper,we study the solving method of numerical solution of parabolic equation with the control parameters.First,we make a corresponding transformation to have two unknown functions into one unknown function.Then we use the Galerkin finite elements in space while usig the backward difference in time to solve the problem which is translated,so we can obtain a high precision discrete single-step format and good parameter identification.Finally,this paper gives the numerical example to prove the numerical method.
出处 《衡阳师范学院学报》 2011年第3期28-31,共4页 Journal of Hengyang Normal University
基金 湖南省自然科学基金资助项目(09JJ3011)
关键词 控制参数 半离散 附加边值条件 抛物型偏微分方程 参数识别 control parameter half-discrete over-specification data parabolic partial differential equation parameter identification
  • 相关文献

参考文献10

  • 1Cannon J. R. ,Lin Y. An inverse problem of finding a parameter in a semilinear heat equation[J]. J. Math. , 1990,145(2) ; 470- 484. 被引量:1
  • 2Rundell W. Determination of an unknown non homogeneous term in a linear partial differential from overspecified boundary data[J]. Appl. Anal. ,1980(10) 231-242. 被引量:1
  • 3Dehghan M. Fourth order techniques for identifying a control parameter in the parabolic equations[J]. Int. J. Eng. Sci. , 2002,40:433-447. 被引量:1
  • 4Dehghan M. Parameter determination in a partial differential equation from the overspecified data[J].Math. Comput. Mod el,2005,41:197-213. 被引量:1
  • 5Dehghan M,Saadatmandi A. A tau method for the one-dimensional parabolic inverse problem subject to temperature overspecification[J]. Comput, Math. , Appl. , 2006,52 : 933-940. 被引量:1
  • 6Dehghan M. Tatari in a parabolic equation with overspecified data[J]. Numer. Methods Partial Differ. Equ. ,2007,23:984- 997. 被引量:1
  • 7熊之光,刘晓奇,邓康.抛物方程初边值问题连续有限元的超收敛性[J].数学的实践与认识,2007,37(11):141-147. 被引量:3
  • 8Dehghan M. The one-dimensional heat equation subject to a boundary integral specification[J]. Chaos,Solitons Fractals, 2007,32:661-675. 被引量:1
  • 9Dehghan M. Identification of a time dependent coefficient in a partial differential equation subject to an extra measurement [J]. Numer. Methods Partial Differ Equ. ,2005(21):611- 622. 被引量:1
  • 10陈传森.有限元超收敛构造理论[M].长沙:湖南科学技术出版社,2001.. 被引量:1

二级参考文献3

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部