期刊文献+

在Bohm模式下氘氚燃烧的等离子体温度分布 被引量:3

PLASMA TEMPERATURE PROFILE OF D\|T BURNING FOR THE BOHM TYPE 
原文传递
导出
摘要 在一定的等离子体密度分布下,从电子和离子能量输运方程出发,研究了氘氚燃烧下的等离子体温度分布.研究中采用了JET 适用的Bohm 模式下的热传导系数,考虑了α粒子的反常扩散效应,动态反馈加热.研究结果表明,Bohm 模式下的热传导率从等离子体中心到边缘逐渐增加;为了维持氘氚燃烧,必须有动态反馈加热,否则,燃烧将熄灭;α粒子的反常扩散,使得加热效率因子ηα在中心区域小于1 ,在外层大于1 ;α粒子的反常扩散越强烈,中心离子温度越高,是由于中心区域的热传导小,电子温度低,反馈加热功率增加的结果;Bohn 模式下的功率放大因子Q 较小,因而适用Bohm By adopting the Bohm type thermal diffusivity coefficient which is applicable to JET,considering the effect of the α particle anomalous diffusion and the dynamic feedback heating,and using the energy transport equations of electron and ion,the plasma temperature profiles of deuterium\|tritium (D\|T) burning are studied under a given plasma density profile.Some results are obtained:the Bohm type thermal conductivity increases from the center of plasma to the boundary;in order to sustain D\|T burning,the dynamic feedback heating power must be present,otherwise,the burning would be extinguished;the power coupling coefficient of α particle with the bulk plasma is less than one in the central part of the plasma,and much larger than one in the outer part;the stronger the α particle anomalous duffusion,the higher the central ion temperature.This is due to the smaller thermal diffusivity coefficient in the central part and the dynamic heating power to increase because of the lower central electron temperature;the energy amplifier factor Q under the Bohm type is smaller than under other types,therefore,the prospect of the Tokamak reactor operation model based on Bohm type is pessimistic.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 1999年第12期2266-2274,共9页 Acta Physica Sinica
基金 国家自然科学基金
  • 相关文献

参考文献2

  • 1Ren Shibing,Nucl Sci Tech,1997年,8卷,46页 被引量:1
  • 2Gang F,Phys Fluids B,1992年,4期,3152页 被引量:1

同被引文献13

  • 1彭晓炜,龚学余,尹陈艳.电子回旋波在托卡马克等离子体中的传播[J].南华大学学报(理工版),2004,18(1):7-11. 被引量:2
  • 2彭晓炜,龚学余,刘文艳.托卡马克等离子体中的电子回旋波电流驱动[J].核聚变与等离子体物理,2005,25(1):29-36. 被引量:9
  • 3Vlad G. a General empirically based micro-instability transport model[J]. Nuclear Fusion, 1998,38(4):557. 被引量:1
  • 4Omens A A M. Advanced Tokamak Concepts[J]. Transaction of Fusion Technology,1996,29(5):397~391. 被引量:1
  • 5Bickerton R J.Diffusion driven plasma currents and bootstrap Tokamak[J] Nature Phy. Sci,1971,229(25):110. 被引量:1
  • 6Hirshman S P. Two-dimensional transport of Tokamak plasmas[J]. Phys. Fluid, 1979,22(4):731. 被引量:1
  • 7Kessel C E.Bootstrap current in a Tokamak[J]. Nuclear Fusion, 1994, 34(9):1221. 被引量:1
  • 8Taylor T S. Physics of advanced to TamakP[J]. Plasma Phys. Control. Fusion, 1997,39(4):47~B73. 被引量:1
  • 9Gormezano C. High performance Tokamak operation regimes [J]. Plasma Phys. Control. Fusion, 1999,41(6):367~380. 被引量:1
  • 10Taroni A. Global and local energy confinement proterties of simple transport coefficients of the Bohm type[J]. Plasma Phys. Control. Fusion, 1994,36(4):1629. 被引量:1

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部