期刊文献+

Phase Transitions of an Epidemic Spreading Model in Small-World Networks

Phase Transitions of an Epidemic Spreading Model in Small-World Networks
下载PDF
导出
摘要 We propose a modified susceptible-infected-refractory-susceptible (SIRS) model to investigate the global oscillations of the epidemic spreading in Watts-Strogatz (WS) small-world networks. It is found that when an individual immunity does not change or decays slowly in an immune period, the system can exhibit complex transition from an infecting stationary state to a large amplitude sustained oscillation or an absorbing state with no infection. When the immunity decays rapidly in the immune period, the transition to the global oscillation disappears and there is no oscillation. Furthermore, based on the spatico-temporal evolution patterns and the phase diagram, it is disclosed that a long immunity period takes an important role in the emergence of the global oscillation in small-world networks.
作者 华达银 高科
机构地区 Department of Physics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第6期1127-1131,共5页 理论物理通讯(英文版)
基金 Supported by National Natural Science Foundation of China under Grand No.10575055 Sponsored by K.C.Wong Magna Fund in Ningbo University
关键词 susceptible-infected-refractory-susceptible (SIRS) model small-world networks oscillation 小世界网络 网络模型 流行病 持续振荡 相变 静止状态 机体免疫力 免疫期
  • 相关文献

参考文献20

  • 1M. Boguna and R. Pastor-Satorras, Phys. Rev. E 66 (2002) 047104. 被引量:1
  • 2R.M. May and A.L. Lloyd, Phys. Rev. E 64 (2001) 066112. 被引量:1
  • 3Y. Moreno, J.B. Gomez, and A.F. Pacheco, Phys. Rev. E 68 (2003) 035103(R). 被引量:1
  • 4N.H. Fefferman and K.L. Ng, Phys. Rev. E 76 (2007) 031919. 被引量:1
  • 5L.B. Shaw and I.B. Schwartz, Phys. Rev. E 77 (2008) 066101. 被引量:1
  • 6M.E.J. Newman, S. Forrest, and J. Balthrop, Phys. Rev. E 66 (2002) 035101(R). 被引量:1
  • 7R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 63 (2001) 066117. 被引量:1
  • 8R. Cohen, S. Havlin, and D. ben-Avraham, Phys. Rev. Lett. 91 (2003) 247901. 被引量:1
  • 9F. Bagnoli, P. Lio, and L. Sguanci, Phys. Rev. E 76 (2007) 061904. 被引量:1
  • 10D.H. Zanette, Phys. Rev. E 64 (2001) 050901. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部