期刊文献+

基于粗糙集和BP神经网络的文本分类研究 被引量:7

A Hybrid Classifier Based on the Rough Sets and BP Neural Networks
下载PDF
导出
摘要 研究文本分类、提高文本检索效率问题,针对文本特征维数过高导致神经网络收敛速度慢、文本分类精度低的难题,结合粗糙集的属性约简和神经网络的文本分类优点,提出了一种粗糙集(RS)结合BP神经网络的文本自动分类算法(RS-BPNN)。RS-BPNN首先应用粗糙集理论的属性约简对文本特征预处理,降低向量维数,然后把冗余的属性从决策表中删去,最后利用神经网络进行分类。并在MATLAB环境中进行了仿真实验,仿真结果表明,RS-BPNN方法的识别精度比传统的BP神经网络高4%左右,提高了文本分类的精度和检索效率。 Although Rough Set can get obviously categorization rules with information reduction under the premise of not influeneing the aceuraey of Text Categorization,it is sensitive to noise data.Neural Network has a strong ability to learn fuzzy data,but it can not remove uncertain and vague information and its performance is weakened because the vectors of text are very huge.A hybrid classifier is presented based on the combination of rough set theory and BP neural network.Firstly,the documents are denoted by vector space model.Secondly,the feature vector were reduced by using rough sets.Finally,the documents were classed by BP neural network.Experimental results show that the algorithm of Rough-ANN is effective for the texts classification,and has the better performance in classification precision,stability and fault-tolerance compared with the traditional BP neural networks.
作者 唐云 罗俊松
出处 《计算机仿真》 CSCD 北大核心 2011年第6期219-222,283,共5页 Computer Simulation
关键词 粗糙集 神经网络 文本分类 约简 Rough sets(RS) Neural network(NN) Text categorization recognition Reduction
  • 相关文献

参考文献10

二级参考文献25

共引文献161

同被引文献41

  • 1彭昱忠,元昌安,王艳,覃晓.基于内容理解的不良信息过滤技术研究[J].计算机应用研究,2009,26(2):433-438. 被引量:19
  • 2封筠,陈志军,李莉蓉.基于修正核函数的SVM分类器研究[J].系统仿真学报,2006,18(3):570-572. 被引量:10
  • 3王明祥,宁宇蓉,王晋国.基于Mallat算法的一维离散小波变换的实现[J].西北大学学报(自然科学版),2006,36(3):364-368. 被引量:25
  • 4MATLAB中文论坛.MATLAB神经网络30个案例分析[M].北京航空航天大学出版社. 被引量:1
  • 5Wang Hao-bo, Ren Wei-zheng, Cui Yan-song. An adaptive WSN node tracking algorithm based on rough-set neural network [J]. Procedia Engineering, 2012, 29: 1750-1754. 被引量:1
  • 6Cao Yu, Chen Xiao-hong, Wu Desheng Dash, Mo Miao. Early warning of enterprise decline in a life cycle using neural networks and rough set theory[J]. Expert Systems with Applications, 2011, 38(6): 6424-6429. 被引量:1
  • 7Srinivasan D, Howler R, Lovrek J I, et al. Design and application of neural networks and intelligent learning systems[J]. Neurocomputing, 2010, 73(4-6): 591-592. 被引量:1
  • 8Hu Q H, Liu J F, Yu D R. Mixed feature selection based on granulation and approximation[J]. Knowledge-Based Systems, 2008, 21(4): 294-304. 被引量:1
  • 9Liu Jian-min, Li Xiao-lei, Zhang Xiao-ming. Misfire diagnosis of diesel engine based on rough set and neural network [J]. Procedia Engineering, 2011, 16:224-229. 被引量:1
  • 10Berqlund E. Improved PLSOM algorithm[J]. Applied Intelligence, 2010, 32(1): 122-130. 被引量:1

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部