期刊文献+

基于核最小二乘模型的矿产靶区预测 被引量:4

Mineral Target Prediction Based on Kernel Minimum Square Error
下载PDF
导出
摘要 地质统计单元的含矿性与地质找矿证据之间存在复杂的非线性关系,建立这种复杂关系的多元非线性统计模型并预测矿产靶区,对矿产勘查具有重要指导意义。以核函数为理论工具,在核最小二乘原理基础上提出了矿产靶区预测的核最小二乘模型;在GDAL数字图像输入输出函数库和CLAPACK线性代数软件包基础上,用VC++语言开发了面向栅格数据的矿产靶区预测核最小二乘模型算法程序,并把模型应用于新疆阿勒泰地区的矿产靶区预测研究。在MapInfo中生成包含100×151个网格统计单元的栅格图层,把栅格化后的15种找矿证据图层转化成100×151×15的数字图像数据立方体,用自行开发的程序计算每个网格统计单元的核最小二乘判别得分。结果表明,网格统计单元判别得分的高值区与已知矿床(点)的空间分布基本一致。 There exists a complex nonlinear relation between ore-bearing possibilities and prospecting evidences.Predicting mineral targets by modeling this complex relation with multivariate nonlinear statistical models is significant for mineral exploration.The authors propose a kernel minimum square error model for mineral target prediction on the basis of kernel function theories and kernel minimum square error.A VC++ program for raster data oriented mineral target prediction with minimum square error algorithm is developed on the basis of GDAL,a C++ library for the input and output of digital image data,and CLAPACK,a linear algebra software package.The model has been applied to the mineral target prediction in Altay,northern Xinjiang.A raster map layer with 100×151 grid cells is generated in MapInfo.15 evidential raster map layers are transformed into a digital image data cube of size 100×151×15.The discriminant scores derived from kernel minimum error are computed for all the grid cells with the program developed by the authors.It is shown that the areas with high discriminant scores coincide with the known mineral occurrences.Thus,the kernel minimum square error model is feasible for multivariate nonlinear mineral target prediction.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2011年第3期937-944,共8页 Journal of Jilin University:Earth Science Edition
基金 国家自然科学基金项目(40872193)
关键词 核函数 核最小二乘法 矿产资源 矿产勘查 靶区预测 kernel function kernel minimum square error mineral resources mineral exploration target prediction
  • 相关文献

参考文献29

  • 1Agterberg F P. Automatic contouring of geological maps to detect target areas for mineral exploration [J].Mathematical Geology,1974, 6(4): 373-395. 被引量:1
  • 2Bonham CarterGF, AgterbergFP,Wright DF. Integration of geological datasets for gold exploration in Nova Scoria[J]. Photogrammetric Engineering and Re- mote Sensing, 1988, 54(11): 1585-1592. 被引量:1
  • 3Agterberg F P. Combining indicator patterns for mineral resource evaluation [C].//Proceedings of International Workshop on Statistical Prediction of Mineral Resources. Wuhan: China University of Geosciences,1990, 1:1 -15. 被引量:1
  • 4Agterberg F P. Combining indicator patterns in weights of evidence modeling for resource evaluation [J]. Nonrenewable Resources, 1992, 1(1) 39- 50. 被引量:1
  • 5Pan G C. Extended weights of evidence modeling for the pseudo estimation of metal grades [J].Nonrenewable Resources, 1996, 5(1) 53- 76. 被引量:1
  • 6成秋明,陈志军,Ali Khaled.模糊证据权方法在镇沅(老王寨)地区金矿资源评价中的应用[J].地球科学(中国地质大学学报),2007,32(2):175-184. 被引量:56
  • 7Pan G C. Canonical favorability model for data integration and mineral resource potential mapping [J]. Computers and Geosciences, 1993, 19(8): 1077 -1100. 被引量:1
  • 8Pan G C. Indicator favorability theory for mineral resource potential mapping [J]. Nonrenewable Resources, 1993, 2(4) 292-311. 被引量:1
  • 9成秋明.非线性成矿预测理论:多重分形奇异性-广义自相似性-分形谱系模型与方法[J].地球科学(中国地质大学学报),2006,31(3):337-348. 被引量:108
  • 10D'Ercole C, Groves D I, Knox-Robinson C M. U sing fuzzy logic in a geographic information system environment to enhance conceptually based prospectivity analysis of Mississippi valley-type mineralization[J].Australian Journal of Earth Sciences, 2000, 47(5): 913-927. 被引量:1

二级参考文献66

共引文献216

同被引文献64

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部