摘要
首先给出了不可约非负矩阵最大特征值的新估计,并进一步利用相似变换构造了一列相似矩阵,从而得到不可约非负矩阵最大特征值的逐步压缩的上下界,其极限为所要求的最大特征值.然后利用Z-矩阵与非负矩阵的关系,给出了不可约Z-矩阵最小特征值的改进算法.该算法迭代过程简单,迭代速度快.最后用数值实验加以验证.
A new estimate on the maximal eigenvalue of a nonnegative matrix are firstly given. Then by using a similarity trans- formation , a series of upper and lower bounds on the maximal eigenvalue of a nonnegative matrix are obtained, these bounds gradually approach the maximal eigenvalue. Finally, based on the relation between the Z -matrix and the nonnegative matrix, An improved numerical algorithm for computing the minimal eigenvalue of an irreducible Z - matrix is proposed. This algorithm iterative process simple, iterative speed. Finally using numerical experiment verified.
出处
《枣庄学院学报》
2011年第2期29-31,共3页
Journal of Zaozhuang University
关键词
不可约
Z-矩阵
最小特征值
相似变换
irreducible
z - matrices
minimal eigenvalue
diagonally transform