期刊文献+

基于多延时动力系统的交通流量建模 被引量:1

Modeling of traffic flows based on multi-delay kinetic system
原文传递
导出
摘要 为了改善多车道、路况可变、流量可变的复杂交通环境中关于道路交通流量的问题,采用多时段延时动力系统思想,建立了基于动力系统的道路交通流量新模型.该模型可以描述前后多时间段对道路交通流量的相互影响.仿真数据结果表明,新模型能够模拟真实的交通流量变化,同时对于控制交通流量以及分析交通系统的特点是有效的. In order to improve a complex traffic environment of multi-lane, variable road conditions and variable traffic flows, a new model is established by using multi-delay kinetic system approach, which can describe the behavior for the interactions of before and after multi-time period for the road traffic flow. The simulation results show that the proposed model can describe the real traffic flow changes, and to the control traffic flow and the analysis of the transportation systems, the model has real applications in deal with multi-lane traffic flows in the practice.
作者 狄岚 梁久祯
出处 《控制与决策》 EI CSCD 北大核心 2011年第6期940-944,共5页 Control and Decision
基金 江苏省自然科学基金项目(BK20080544)
关键词 交通流量 多延时动力系统 多车道路况 仿真 traffic flow: multi-delaykineticsystem multi-laneroadconditions simulation
  • 相关文献

参考文献10

  • 1Prigogine I, Herman R. Kinetic theory of vehicular traffic[M]. New York: Elsevier, 1971. 被引量:1
  • 2Bonzani I, Gramani Cumin L M. Modeling and simulations of multilane traffic flow by kinetic theory methods[J]. Computers and Mathematics with Applications, 2008, 56(5): 2418-2428. 被引量:1
  • 3Delitala M, Tosin A. Mathematical modeling of vehicular traffic: A discrete kinetic theory approach[J]. Mathmatic Models Methods Application Science, 2007, 17(3): 901- 932. 被引量:1
  • 4Delitala M. Nonlinear models of vehicular traffic flow- New frameworks of the mathematical kinetic theory[J]. Mecanique, 2003, 331(9): 817-822. 被引量:1
  • 5Coscia V, Delitala M, Frasca E On the mathematical theory of vehicular traffic flow II: Discrete velocity kinetic models[J]. Int J Non-Linear Mech, 2007, 42(2): 411-421. 被引量:1
  • 6Gramani Cumin L M. On the modeling of granular traffic flow by the kinetic theory for active particles: Trend to equilibrium and macroscopic behavior[J]. Int J Non-Linear Mech, 2009, 44(11): 263-268. 被引量:1
  • 7Bonzani I, Mussone L. From Experiments to hydrodynamic traffic flow models: Modeling and parameter identification[J]. Mathmatic Computer Modeling, 2003, 37(5): 109-119. 被引量:1
  • 8Daganzo C. Requiem for second order fluid approximations of traffic flow[J]. Trans on Research Part B, 1995, 29(3): 277-286. 被引量:1
  • 9Darbha S, Rajagopal K R. Limit of a collection of dynamical systems: An application to modeling the flow of traffic[J]. Mathmatic Models Methods Application Science, 2002, 12(10): 1381-1402. 被引量:1
  • 10徐丽群.交通拥挤控制的实时决策支持模型[J].控制与决策,2005,20(11):1221-1224. 被引量:5

二级参考文献6

  • 1Filippo Logi, Stephen G Ritchie. Development and Evaluation of a Knowledge-based System for Traffic Congestion Management and Control [ J ].Transportation Research: Part C, 2001, 9(6): 433-459. 被引量:1
  • 2Dysan Teodorovic. Fuzzy Logic Systems for Transportation Engineering: The State of the Art[J].Transportation Research: Part A, 1999, 33(5): 337-364. 被引量:1
  • 3Dusan Teodorovic, Katarina Vukadinovic. Traffic Control and Transport Planning: A Fuzzy Sets and Neural Networks Approach [M]. Boston: Kluwer Academic Publishers, 1998: 38-70. 被引量:1
  • 4Jarkko Niittymkia, Esko Turunenb. Traffic Signal Control on Similarity Logic Reasoning[J]. Fuzzy Sets and Systems, 2003, 133(1): 109-131. 被引量:1
  • 5Iisakki Kosonen. Multi-agent Fuzzy Signal Control Based on Real-time Simulation [J]. Transportation Research: Part C, 2003, 11(5): 389-403. 被引量:1
  • 6Sazi Murat Y, Ergun Gedizlioglu. A Fuzzy Logic Multi-phased Signal Control Model for Isolated Junctions [J]. Transportation Research: Part C, 2005,13(1): 19-36. 被引量:1

共引文献4

同被引文献19

  • 1梁久祯,刘明珠.缩放延迟微分方程数值解θ-方法稳定性[J].数值计算与计算机应用,1996,17(4):271-278. 被引量:2
  • 2Berthelin F.Numerical ux-splitting for a class of hyperbolic systems with unilateral constraint[J].Mathematical Modeling and Numerical Analysis,2003,37(3):479-494. 被引量:1
  • 3Daganzo C.Requiem for second order fluid approximations of traffic flow[J].Transportation Research,Part B:Methodological,1995,29(4):277-286. 被引量:1
  • 4Colombo R M.A 2X2 hyperbolic traffic flow model[J].Mathematical and Computer Modeling,2002,35(5):683-688. 被引量:1
  • 5Zhang M.A non-equilibrium traffic model devoid of gaslike behavior[J].Transportation Research,Part B:Methodological,2002,36(3):275-298. 被引量:1
  • 6Prigogine I,Herman R.Kinetic theory of vehicular traffic[M].New York:American Elsevier Publishing Co,1971. 被引量:1
  • 7Klar A,Wegener R.Enskog-like kinetic models for vehicular traffic[J].Journal of Statistical Physics,1997,87(1):91-114. 被引量:1
  • 8Nelson P.A kinetic model of vehicular traffic and its associated bimodal equilibrium solutions[J].Transport Theory and Statistical Physics,1995,24(1/3):383-408. 被引量:1
  • 9Paveri-Fontana S.On Boltzmann like treatments for traffic flow:a critical review of the basic model and an alternative proposal for dilute traffic analysis[J].Transportation Research,1975,9(4):225-235. 被引量:1
  • 10Helbing D.Gas-kinetic derivation of Navier-Stokes-like traffic equation[J].Physical Review E,1996,53(3):2366-2381. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部