期刊文献+

视觉同步定位与地图重建——基于先验信息的SIFT匹配算法

Prior information constrained SIFT matching algorithm for visual simultaneous localization and mapping
原文传递
导出
摘要 鉴于尺度不变特征转换(SIFT)匹配算法存在计算效率不高且容易出现误匹配的问题,针对视觉同步定位与地图重建,提出了一种基于先验信息的SIFT匹配算法.该算法首先根据机器人和特征点的相对距离变化来预测尺度空间的变化;然后根据机器人和特征点的当前状态来预测特征点的图像位置;最后在预测的图像位置进行SIFT匹配.实验结果表明该算法能显著提高SIFT匹配的计算效率和准确性. The scale invariant feature transform(SIFT) algorithm has the problem of computational inefficiency and mismatch. Therefor, a prior information constrained SIFT matching algorithm is proposed for the visual simultaneous localization and mapping(vSLAM) applications. Firstly, the scale space is predicted according to the relative distance from the robot to the feature. Then the feature position is estimated according to the state of both the robot and the feature. Finally, sift matching is conducted within the predicted image region. The experiment results show that the proposed algorithm can achieve better computational efficiency and matching performance.
出处 《控制与决策》 EI CSCD 北大核心 2011年第6期911-915,共5页 Control and Decision
基金 浙江省科技计划重大科技专项重点项目(2006C11200)
关键词 视觉同步定位与地图重建 特征匹配 尺度空间 扩展卡尔曼滤波 visual simultaneous localization and mapping: feature matching~ scale space~ extended Kalman filter
  • 相关文献

参考文献17

  • 1Davison A J, Reid I D, Molton N D, et al. Monoslam: Real-time single camera slam[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1052- 1067. 被引量:1
  • 2Paz L M, Pinies P, Tardos J D, et al. Large-scale 6-DOF SLAM with stereo-in-hand[J]. IEEE Trans on Robotics, 2008, 24(5): 946-957. 被引量:1
  • 3Solh J, Monin A, Devy M, et al. Fusing monocular information in multicamera SLAM[J]. IEEE Trans on Robotics, 2008, 24(5): 958-968. 被引量:1
  • 4Lowe D. Distinctive image features from scale-invariant keypoints[J]. Int J of Computer Vision, 2004, 60(2): 91- 110. 被引量:1
  • 5Gil A, Reinoso O, Paya L, et al. Managing data association in visual SLAM using SIFT features[J]. Int J of Factory Automation, Robotics and Soft Computing, 2007: 179- 184. 被引量:1
  • 6Chen C H, Chan Y E SIFT-based monocular SLAM with inverse depth parameterization for robot localization[C]. IEEE Workshop on Advanced Robotics and its Social Impacts. Hsinchu: IEEE Press, 2007. 被引量:1
  • 7Pradeep V, Medioni G, Weiland J. Visual loop closing using multi-resolution SIFT grids in metric-topological SLAM[C]. IEEE Conf on Computer Vision and Pattern Recognition. Miami: IEEE Press, 2009: 1438-1445. 被引量:1
  • 8Ke Y, Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors[C]. Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Washington DC: IEEE Press, 2004: 506-513. 被引量:1
  • 9Bay H, Tuytelaars T, Gool Van L. SURF: Speeded up robust features[C]. Proc of the European Conf on Computer Vision. Graz: Springer Press, 2006. 被引量:1
  • 10Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部