期刊文献+

UKF与Mean shift算法相结合的实时目标跟踪 被引量:6

Real time object tracking using Mean shift combined UKF
下载PDF
导出
摘要 针对Mean shift(即MS)算法理论上的不足以及跟踪目标时的邻域跟踪局限性,提出将Mean shift算法与尺度无迹卡尔曼滤波器(Scaled unscented Kalman filter,SUKF)相结合的实时目标跟踪算法。该算法利用尺度无迹卡尔曼滤波器获取Mean shift算法的初始位置,然后,利用Mean shift算法获取跟踪位置。通过分析跟踪区域内横纵向直线的统计变化获取目标的尺度变化,依此自适应调节Mean shift跟踪算法中核函数带宽,并对高速公路上快速运动的车辆进行跟踪实验。研究结果表明:该算法与固定核窗宽Mean shift算法相比,对目标跟踪更准确;SUKF滤波使MS的迭代次数减少,跟踪的实时性提高;核窗宽自适应调节可使跟踪误差降低到50%以下。 Aiming at theoretic and neighborhood tracking limitation of Mean shift (MS), a real-time target tracking algorithm combined with Mean shift and scaled unscented Kalman filter (SUKF) was proposed, The algorithm firstly used SUKF to estimate the starting position of the Mean shift in every frame. And then the Mean shift was used to locate the target position. The target scale changing was estimated by analyzing the statistical changes of the horizontal and vertical lines in the tracking region. According to the estimated scale, the kernel-band width changed adaptively for Mean shift object tracking. Experiments on the highway vehicle tracking were done. The results show that the proposed tracking algorithm can locate the target more accurately than the traditional Mean shift; the SUKF can reduce the iteration times of MS and improve the real time of tracking. Adaptive adjustment of kernel-band width further can reduce the tracking errors to less than 50% of the MS algorithms.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第5期1338-1343,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金重大专项项目(90820302) 国家自然科学基金面上项目(60805027) 国家博士点基金资助项目(200805330005)
关键词 SUKF Mean SHIFT算法 自适应尺度 目标跟踪 SUKF Mean shift, adaptively scale object tracking
  • 相关文献

参考文献15

  • 1Fukunage K,Hostetler L D.The estimation of the gradient of a density function with application in pattern recognition[J].IEEE Transaction on Information Theory,1975,21(1):32-40. 被引量:1
  • 2Cheng Y.Mean shift mode seeking and clustering[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1995,17(8):790-799. 被引量:1
  • 3Comaniciu D,Meer P.Mean shift analysis and applications[C] //Proceeding of the IEEE International Conference on Computer Vision.Kerkyra,Greece,1999:1197-1203. 被引量:1
  • 4Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2003,25(5):564-577. 被引量:1
  • 5文志强,蔡自兴.目标跟踪中巴氏系数误差的分析及其消除方法[J].计算机学报,2008,31(7):1165-1174. 被引量:13
  • 6李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 7Unnikrishnan R,Pantofaru C,Hebert M.Toward objective evaluation of image segmentation algorithms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6):929-944. 被引量:1
  • 8Wu K,Yang M.Mean shift-based clustering[J].Pattern Recognition,2007,40(11):3035-3052. 被引量:1
  • 9朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 10Shah C,Tan T,Wei Y.Real-time hand tracking using a mean shift embedded particle filter[J].Pattern Recognition,2007,40(7):1958-1970. 被引量:1

二级参考文献52

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2文志强,蔡自兴.Mean Shift算法的收敛性分析[J].软件学报,2007,18(2):205-212. 被引量:48
  • 3李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 4[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40. 被引量:1
  • 5[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799. 被引量:1
  • 6[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149. 被引量:1
  • 7[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635. 被引量:1
  • 8[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219. 被引量:1
  • 9[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575. 被引量:1
  • 10[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240. 被引量:1

共引文献251

同被引文献38

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部