期刊文献+

基于自适应差分算法的电力系统稳定器参数设计 被引量:2

Parameter Design of Power System Stabilizer Based on Self-adaptive Differential Evolution Algorithm
下载PDF
导出
摘要 自适应差分算法强大高效,是一种基于群体的随机搜索技术,一般用于连续空间优化问题求解,被广泛应用于科学和工程领域。自适应差分算法是在差分进化算法基础上经过改进得到的算法,其实验向量生成策略及其相关的控制参数值拥有自适应能力,这种能力是通过从前期生成可能解的过程中学习得来的。在利用S imu link建立起单机无穷大系统仿真模型的基础上,根据时间乘绝对误差积分准则(ITAE准则)设计寻优问题的目标函数,将电力系统稳定器的参数设计问题转化为最小化问题,并用自适应差分算法求解。最后在单机无穷大系统上进行仿真实验,结果表明经过优化设计的电力系统稳定器拥有良好性能。 Differential evolution(DE) algorithm is an efficient and powerful population-based stochastic search technique for solving the optimization problems over continuous space,which has been widely applied to the scientific and engineering fields.Self-adaptive differential evolution(SaDE) algorithm is the improved algorithm,in which both trial vector generation strategies and their associated control parameter values are gradually self-adapted by learning from their previous experiences in generating promising solutions.Based on the simulation model of single machine infinite bus system,the objective function of optimization issue is designed according to the time by absolute error integral criterion(ITAE criterion).The parameter design issue of power system stabilizer is converted to the minimization issue.Finally,the simulation test is carried out on a single machine infinite bus system,and the results show that the power system stabilizer has a good performance after the design optimization.
出处 《四川电力技术》 2011年第3期26-28,72,共4页 Sichuan Electric Power Technology
关键词 自适应差分算法 SIMULINK ITAE准则 单机无穷大系统 self-adaptive differential evolution algorithm Simulink ITAE criterion single machine infinite bus system
  • 相关文献

参考文献7

  • 1束洪春著..电力工程信号处理应用[M].北京:科学出版社,2009:448.
  • 2李莉..基于遗传算法优化权值的H/_∞电力系统稳定器的设计[D].山东大学,2007:
  • 3A. K. Qin, V. L. Huang, P. N. Suganthan. Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization [ J ]. IEEE Transaction, Evolu-tionary Computation, 2009,13 (2) :398 - 417. 被引量:1
  • 4范国英,郭雷,孙勇,李振元,傅吉悦,姜旭.BFO-PSO混合算法的PSS参数优化设计[J].电力系统及其自动化学报,2010,22(6):28-31. 被引量:10
  • 5吴峰,陈维荣,李奇,鲁晓帆.基于粒子群优化算法的PSS参数优化[J].电力系统保护与控制,2009,37(10):53-58. 被引量:17
  • 6J.J. Liang, A.K. Qin, Ponnuthurai Nagaratnam Suganthan, S. Baskar. Comprehensive learning particle swarm optimizer for global optimization of muhimodal functions [ J ]. IEEE Transaction, Evolutionary Computation,2006,10(3) : 67 -82. 被引量:1
  • 7J.J. Liang, A.K. Qin, Ponnuthurai Nagaratnam Suganthan, S. Baskar. Comprehensive learning particle swarm optimizer for global optimization of muhimodal functions [ J ]. IEEE Transaction, Evolutionary Computation, 2006, 10(3) : 67 - 82. 被引量:1

二级参考文献22

共引文献22

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部