期刊文献+

非稳态传热方程分析解中μ值计算新方法 被引量:2

New calculating method of μ value in analytical solution of unsteady heat transfer equation
原文传递
导出
摘要 根据传热学理论,推导了对流边界条件下非稳态传热方程分析解中μ的计算新方法,并与用超越方程解出的平壁对流传热的第一个μ进行了比较。结果表明:当Bi值在0.01至0.6之间时,新方法计算的μ值与超越方程解的第1个值相比越来越大;而Bi值在0.6至100之间时,两种方法的值逐渐接近并重合。利用新方法计算的μ值计算了10.8 t冷、热钢锭的加热过程,计算结果与实验结果接近。 According to the heat exchange theory,a new calculating method of μ value in the unsteady heat transfer equation under the convective boundary condition was inferred,which was compared with the first μ value of plane wall convection that solved by the transcendental equation.When the value is from 0.01 to 0.6,the result shows that the μ value becomes bigger and bigger than the first value solved by transcendental equation solution.When the value is from 0.6 to 100,the values of the two methods are moving close to and overlapping.Using the new method to calculate the μ value of the heating process of 10.8 t cold and hot steel ingot,the calculated result is close to the experimental result.
作者 高兴勇
出处 《锻压技术》 CAS CSCD 北大核心 2011年第3期120-122,共3页 Forging & Stamping Technology
基金 贵州省贵阳市工业公关项目([2009]1-053)
关键词 对流边界条件 非稳态传热 分析解 μ值 counter-flow boundary condition unsteady heat transfer analytical solution μ value
  • 相关文献

参考文献5

二级参考文献4

  • 1王补宣.工程传热传质学[M].北京:人民教育出版社,1993:87-89. 被引量:1
  • 2B.萨琴科.传热学[M].北京:高等教育出版社,1997:234-236. 被引量:1
  • 3J.威尔缔.工程传热学[M].北京:人民教育出版社,1993:116-117. 被引量:1
  • 4周筠清.传热学[M].北京:北京科技大学出版社,1995:45-47. 被引量:1

共引文献4

同被引文献17

  • 1李春治,刘椿林.大型钢锭冷至室温与再加热工艺的研究[J].大型铸锻件,1990(4):110-115. 被引量:2
  • 2INCROPERA F P, DEWITT D P, BERGMAN T L,etal.传热和传质基本原理[M].葛新石,叶宏,译.北京:化学工业出版社,2007:531-534. 被引量:11
  • 3HOLMANJP.Heattransfer[M].北京:机械工业出版社,2008. 被引量:2
  • 4Alam M K, Goetz R L, Semiatin S L. Modeling of thermal stresses and thermal cracking during heating of large ingots [J]. Journal of Manufacturing Science and Engineering. 1996, 118 (5): 235-242. 被引量:1
  • 5Finlayson P C, Schofield J S. Heating for forging in a batch type furnace [J]. Iron and Steel Institute, 1959, 193: 238- 252. 被引量:1
  • 6Kent C H. Thermal stresses in spheres and cylinders pro duced by temperatures varying with time [J]. Transactions of the ASME. 1932, 54:185 - 196. 被引量:1
  • 7Jaeger J C. On thermal stresses in circular cylinders [J]. Phil. Mag. , 1945, 36: 414-428. 被引量:1
  • 8Sun R C. Determination of the forging-heating schedule for a large hastelloy alloy X ingot [J] Metall. Trans. , 1970, 1: 1881 - 1887. 被引量:1
  • 9Chandrasekharan S, Shivpuri R. Optimization of Preheating Schedules for Nickel Base Superalloy Ingots Using Finite Ele- ment Method[M]. Columbus : The Ohio State University, 1992. 被引量:1
  • 10Alam M K, Goetz R L, Semiatin S L. Modeling of thermalstresses and thermal cracking during heating of large ingots[J].Journal of Manufacturing Science and Engineering. 1996, (5):118-237. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部