期刊文献+

波前法在三角网格孔洞修补中的应用 被引量:13

Advancing Front Method in Triangular Meshes Hole-Filling Application
下载PDF
导出
摘要 为了有效地修补出三角网格中缺失部分的形状,针对弯曲较大的大面积缺失孔洞,提出一种基于波前法的孔洞修补算法.在提取孔洞边界后,首先估计出相对准确的边界点法向,结合Laplacian坐标对边界点进行凹凸性分类;利用边界点的法向和凹凸性信息适当选取控制参数,计算合理的新增顶点位置,并生成新的三角网格,以实现对孔洞的修补.实验结果表明,该算法对弯曲较大的大面积缺失孔洞有较好的修补效果;在未经后续优化处理的情况下,如细化、光顺等,修补网格的顶点密度与原有网格相近,并且与原有网格之间自然过渡. In order to restore the missing shape of holes in triangular meshes,especially big ones locating at a high curved region,a hole-filling algorithm based on advancing front method is proposed in this paper.After detecting the boundary of holes,normals of the boundary vertices are well estimated.Combining the normals with the Laplacian coordinates,the boundary vertices are classified into two types: concave and convex.Then,based on the normal,the concavity-convexity feature of each boundary vertex and a proper adjustment parameter,optimal vertices are carefully computed and new triangles are created to fill holes.Many experimental results show that our method has powerful ability to recover the missing shape with high quality triangular meshes for even big holes located at the high curved region.Without post-processing,such as refinement and smoothing,the hole-filing meshes obtained by our method interpolate the shape and have consistent mesh distribution and smooth transition with the surrounding meshes.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第6期1048-1054,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金重点项目(U0935004) 国家自然科学基金(60873181) 中央高校基本科研业务费(DUT11SX08)
关键词 波前法 孔洞修补 三角网格 Laplacian坐标 advancing front method hole-filling triangular mesh Laplacian coordinate
  • 相关文献

参考文献16

  • 1胡事民,杨永亮,来煜坤.数字几何处理研究进展[J].计算机学报,2009,32(8):1451-1469. 被引量:46
  • 2Davis J, Marscher S R, Garr M, et al. Filling holes in complex surfaces using volumetric diffusion[C] //Proceedings of the 1st International Symposium on 3D Data Processing Visualization, and Transmission. Los Alamitos: IEEE Computer Society Press, 2002:428-438. 被引量:1
  • 3Ju T. Robust repair of polygonal models[C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2004:888-895. 被引量:1
  • 4Liepa P. Filling holes in meshes [C] //Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. Aire-la-Ville: Eurographies Association Press, 2003:200-205. 被引量:1
  • 5张洁,岳玮宁,王楠,汪国平.三角网格模型的各向异性孔洞修补算法[J].计算机辅助设计与图形学学报,2007,19(7):892-897. 被引量:24
  • 6Zhao W, Gao S M, Lin H W. A robust hole filling algorithm for triangular mesh [J]. The Visual Computer, 2007, 23 (12) : 987-997. 被引量:1
  • 7Levy B. Dual domain extrapolation [C] //Computer C-raphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2003 : 364-369. 被引量:1
  • 8Brunton A, Wuhrer S, Shu C, et al. Filling holes in triangular meshes by curve unfolding [C] //Proceedings of IEEE International Conference on Shape Modeling and Applications. Beijing: Institute of Electrical and Electronics Engineers Press, 2009: 66-72. 被引量:1
  • 9Jun Y T. A pieeewise hole filling algorithm in reverse engineering [J]. Computer-Aided Design, 2005, 37(2): 263- 270. 被引量:1
  • 10张国雄.三坐标测量机的发展趋势[J].中国机械工程,2000,11(1):222-226. 被引量:114

二级参考文献47

  • 1严寒冰,胡事民.球面坐标下的凸组合球面参数化[J].计算机学报,2005,28(6):927-932. 被引量:7
  • 2Leong K F, Chua C K, Ng Y M. A study of stereolithography file errors and repair. Part 1: generic solution[J]. International Journal of Advanced Manufacturing Technology, 1996, 12(6): 407~414. 被引量:1
  • 3Leong K F, Chua C K, Ng Y M. A study of stereolithography file errors and repair. Part 2: special cases[J]. International Journal of Advanced Manufacturing Technology, 1996, 12(6): 415~422. 被引量:1
  • 4Liepa Peter. Filling holes in meshes[C]. Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Processing, Aachen, Germany, 2003. 200~205. 被引量:1
  • 5Davis J, Marschne S R, Garr M, et al. Filling holes in complex surfaces using volumetric diffusion[A]. In: First International Symposium on 3D Data Processing, Padua, 2002. 428~438. 被引量:1
  • 6Carr1 J C, Beatson R K, Cherrie J B, et al. Reconstruction and representation of 3D objects with radial basis functions[A]. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, New York, 2001. 67~76. 被引量:1
  • 7Nikita Kojekine, Savchenko V, Hagiwara I. Surface reconstruction based on compactly supported radial basis functions[M]. In: Geometric Modeling: Techniques, Applications, Systems and Tools. Norwell: Kluwer Academic Publishers, 2004. 218~231. 被引量:1
  • 8Turk G, O'Brien J F. Variational implicit surfaces [R]. Technical Report GIT-GVU-99-15, Georgia: Georgia Institute of Technology. 1999. 被引量:1
  • 9Jin X, Sun H, Peng Q. Subdivision interpolating implicit surfaces[J]. Computers & Graphics, 2003, 27(5): 763~772. 被引量:1
  • 10Szeliski R,Tonnesen D.Surface modeling with oriented particle systems[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Chicago,1992:185-194 被引量:1

共引文献206

同被引文献92

引证文献13

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部