期刊文献+

LiAlH_4与LiNH_2的相互作用机理及储氢特性 被引量:4

Reaction Mechanism and Hydrogen Storage Properties of LiAlH_4 and LiNH_2
下载PDF
导出
摘要 将LiAlH4和LiNH2按摩尔比1∶2进行球磨复合,然后将复合物进行加热放氢,对完全放氢后的产物进行再吸氢,系统研究了复合物放氢/再氢化行为.通过X射线衍射(XRD)、差示扫描量热法(DSC)和傅里叶变换红外光谱(FTIR)等测试手段对反应过程进行了分析.结果表明,LiAlH4/2LiNH2复合体系加热放氢分为3个反应阶段,放氢后生成Li3AlN2,总放氢量达到8.65%(质量分数).放氢生成的Li3AlN2在10 MPa氢气压力和400℃条件下,能可逆吸氢5.0%(质量分数),吸氢后的产物为LiNH2,AlN和LiH,而不再生成LiAlH.对LiAlH/2LiNH复合物放氢/再氢化过程机理进行了分析. Mixture of LiAlH4and LiNH2 with a molar ratio of 1:2 was ball-milled to form Li-Al-N-H compo-site.The prepared composite was heated for dehydrogenation,and the fully dehydrogenated sample was re-hydrogenated.The dehydrogenation/re-hydrogenation processes were studied by means of XRD,DSC and FTIR analysis.The experimental results show that the dehydrogenation process of LiAlH4/2LiNH2 composite was a three-step reaction,and Li3AlN2 was finally formed after releasing 8.65%(mass fraction) hydrogen.Furthermore,the derived Li3AlN2 can be re-hydrogenated to LiNH2,AlN and LiH under conditions of 10 MPa H2 and 400 ℃,and 5.0%(mass fraction) hydrogen can be reversibly stored by Li3AlN2.The dehydrogenation/re-hydrogenation mechanism of LiAlH4/2LiNH2 composite was also discussed.
机构地区 浙江大学材料系
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2011年第6期1330-1333,共4页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:50671094)资助
关键词 储氢材料 储氢性能 配位氢化物 化学氢化物 金属氮氢化物 Hydrogen storage material Hydrogen storage property Complex hydride Chemical hydride Metal-nitrogen-hydride
  • 相关文献

参考文献14

  • 1ChenP., XiongZ. T., LuoJ. Z., LinJ. Y., TanK. L.. Nature[J], 2002, 420:302-304. 被引量:1
  • 2Ichikawa T. , Hanada N. , Isobe S. , Leng H. Y. , Fujii H. J.. Phys. Chem. B[J] , 2004, 108(23) : 7887-7892. 被引量:1
  • 3YANGJing-Kui(杨敬葵) WANGXin-Hua(王新华) BEIYa-Yao(贝雅耀) PANHong-Ge(潘洪革) CHENLi-Xin(陈立新) IJlShou-Quan(李寿权) CHENChug-Pin(陈长聘).稀有金属材料与工程,2010,39(9):1561-1564. 被引量:1
  • 4Xiong Z. T. , Wu G. T. , Hu J. J. , Chen P.. J. Power Sources[J], 2006, 159:167-170. 被引量:1
  • 5YangJ. K. , WangX. H., MaoJ., ChenL. X., PanH. G., LiS. Q., GeH. W., ChenC. P.. J. Alloy Compd. [J] , 2010, 494: 58-61. 被引量:1
  • 6Kojima Y. , Matsumoto M. , Kawai Y. , Kawai Y. , Haga T. , Ohba N. , Miwa K. , Towata S. , Nakamori Y. , Orimo S.. J. Phys. Chem. B[J], 2006, 110:9632-9636. 被引量:1
  • 7Lu J., Fang Z. Z.. J. Phys. Chem. B[J], 2005, 109(44): 20830-20834. 被引量:1
  • 8Dolotko O. , Zhang H. Q. , Ugurlu O. , Wiench J. W. , Pruski M. , Chumbley L. S. , Pecharsky V.. Acta Mater. [J], 2007, 55(9) : 3121-3130. 被引量:1
  • 9Lu J. , Fang Z. Z. , Sohn H. Y.. J. Chem. Phys. B[J]. 2006, 110(29) :14236-14239. 被引量:1
  • 10Langmi H. W. , Culligan S. D. , MeGrady G. S.. Int. J. Hydrogen Energy[J], 2009, 34:8108-8114. 被引量:1

同被引文献180

  • 1许炜,陶占良,陈军.储氢研究进展[J].化学进展,2006,18(2):200-210. 被引量:85
  • 2Schlapbach L. , Zuttel A.. Nature[ J] , 2001,414(6861 ) : 353-358. 被引量:1
  • 3Zuttel A.. Materials Today[J] , 2003, 9:24-33. 被引量:1
  • 4Jain I. P.. International Journal of Hydrogen Energy[J], 2009, 34(17) : 7368-7378. 被引量:1
  • 5Zuttel A.. Naturwissenschaften [ J ], 2004, 91 (4) : 157-172. 被引量:1
  • 6Amendola S. C. , Onnerud P. , Kelly M. T. , Petillo P. J. , Sharp-Goldman S. L. , Binder M.. Journal of Power Sources[J], 1999, 84(1) : 130-133. 被引量:1
  • 7Zuttel A. , Wenger P. , Rentsch S. , Sudan P. , Mauron P. , Emmenegger C.. Journal of Power Sources[J] , 2003, 118(1/2) : 1-7. 被引量:1
  • 8Ming A. , Jurgensen A. R.. J. Phys. Chem. B[J] , 2006, 110(13) : 7062-7067. 被引量:1
  • 9Ming A. , Jurgensen A. R. , Spencer W. A. , Anton D. L. , Pinkerto F. E. , Hwang S. J. , Kim C. , Bowman R. C.. J. Phys. Chem. C[J], 2008, 112(47): 18661-18671. 被引量:1
  • 10Garroni S., Pistidda C., BruneUi M., Vaughan G. B. M., Surinach S., Baro M. D.. Scripta Materialia[J], 2009, 60(12) : 1129- 1132. 被引量:1

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部