摘要
研究了朗之万方程的动力学性质,并用它模拟了蛋白质分子的折叠过程.首先在相空间中对朗之万方程做连续映射,发现做布朗运动的粒子在位置坐标上存在明显的概率分布,这表明蛋白质折叠过程中分子空间构型是非遍历的.此外,本文还通过数值模拟得到了去折叠态蛋白质的紧密度指标,并验证了它与实验结果以及其他理论方法的一致性.本文还提出了一种利用重整化方法研究熔球体状态蛋白质的理论模型,并提供了考虑疏水基影响的蛋白质折叠过程的模拟思路.
Some ideas concerning the properties of Langevin equation and its applications to the protein folding process are introduced in this paper. Continuous mapping of Langevin equation is constructed in the phase space and a clear inhomogeneous distribution at position of the Brownian particles is discovered, which is consistent with the hypothesis of the nonergodicity of space structure of protein molecule in the folding process. Besides, a random coil with the same compactness index as proteins in the denatured state is obtained by simulation under the self-avoiding walk condition. Taking the hydrophobic effects as well as the renormalization model into consideration, we present the method to simulate the process of protein shrinking from a random coil to a molten globule.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2011年第6期76-82,共7页
Acta Physica Sinica
基金
清华大学骨干人才计划(批准号:413410002)资助的课题~~
关键词
朗之万方程
蛋白质折叠非遍历性
紧密度指标
重整化
Langevin equation
nonergodicity of protein folding
compactness index
renomalization