期刊文献+

焊条性能神经网络非线性组合智能预测模型 被引量:2

Nonlinear combination neural network model of intelligent prediction on electrode properties
下载PDF
导出
摘要 通过试验测定焊条熔敷金属的断后伸长率和冲击吸收功等力学性能,以多层前馈神经网络(BP)、径向基函数神经网络(RBF)、自适应模糊神经网络(AFNN)3种方法获得的单一预测模型的计算值作为输入参数,建立焊条熔敷金属力学性能神经网络非线性组合预测模型.利用42组试验样本对模型进行训练和验证.结果表明,断后伸长率和冲击吸收功的预测平均相对误差均在5%以内,满足实际生产要求.采用Matlab和visual C++混合编程技术开发了基于数据库的焊条性能智能预测软件系统,可以直接根据焊条原材料成分对焊条熔敷金属的断后伸长率、冲击吸收功等力学性能进行较为准确的预测,为焊条的质量预测与控制提供了一条简单有效的新途径. The elongation after fracture and impact energy of the deposited metal by electrode were tested by experiments.A nonlinear combination neural network model to predict the deposited metal mechanical properties by electrode was built by taking predicted data acquired by such single models as BP,RBF and adaptive fuzzy neural network as input parameters.42 groups of experimental samples were used to train and verify the model.The results show that the average relative prediction errors of both elongation after fracture and impact energy are less than 5% and it satisfies the demands of practical production.An intelligent prediction system of electrode properties was developed by Matlab and visual C++ and it can correctly predict the elongation after fracture and impact energy of deposited metal by electrode according to the raw material components.It provides a new,simple and effective way to predict and control the electrode quality.
作者 黄俊 徐越兰
出处 《焊接学报》 EI CAS CSCD 北大核心 2011年第5期89-92,117,共4页 Transactions of The China Welding Institution
关键词 自适应模糊神经网络 熔敷金属 碳钢焊条 非线性组合预测 adaptive fuzzy neural network deposited metal carbon steel electrode nonlinear combination prediction
  • 相关文献

参考文献8

  • 1浦江..酸性电焊条智能化专家系统的开发研究[D].南京理工大学,2006:
  • 2Sumantra Mandal, Sivaprasad P V, Venugopal S, et al. Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion [ J ]. Applied Soft Computing, 2009(9) : 237-244. 被引量:1
  • 3Botlani Esfahani M, Toroghinejad M R, Key Yeganeh A R. Mod- eling the yield strength of hot strip low carbon steels by artificial- neural network [ J ]. Materials and Design, 2009, 30:3653 - 3658. 被引量:1
  • 4张礼兵,金菊良,程吉林,赵国峰.基于人工神经网络的模型择优预测方法及应用[J].水力发电学报,2007,26(6):12-16. 被引量:7
  • 5刘旭,于国祥,沈西挺.基于神经网络的预测模型的比较研究[J].河北省科学院学报,2007,24(4):7-12. 被引量:9
  • 6赵文涛,殷建平,龙军.一种基于粒子群优化算法的组合预测模型[J].计算机工程与科学,2008,30(11):53-55. 被引量:1
  • 7Huang Jun, Xu Yuelan. Combination predicting neural network model for E4303 electrode mechanical properties [ C ]// Institute of Electrical and Electronics Engineers, Inc. Sixth international con- ference on natural computation. Shandong Yantai, 2010:1610 - 1613. 被引量:1
  • 8杨淑莹著..模式识别与智能计算 Matlab技术实现[M].北京:电子工业出版社,2008:350.

二级参考文献28

共引文献14

同被引文献30

  • 1徐越兰,黄俊,王克鸿.Prediction of mechanical property of E4303 electrode using artificial neural network[J].China Welding,2004,13(2):132-136. 被引量:3
  • 2李建国,李兴志,王建民.稀土低碳低合金耐磨铸钢焊条的研制[J].稀土,2006,27(6):69-72. 被引量:7
  • 3张毅.计算机技术在焊接材料领域的应用及展望[J].黄山学院学报,2007,9(5):48-51. 被引量:2
  • 4R. P. Singh, R. C. Gupta, S. C. Sarkar. Application of Ar- tificial Neural Network To Analyze And Predict The Me- chanical Properties of Shielded Metal Arc Welded Joints Under The Influence of External Magnetic Field[ J]. In- ternational Journal of Engineering Research & Technolo- gy,2012,1 (8) :1 -12. 被引量:1
  • 5Y. K. Yousif, K. M. Daws, B. I. Kazem. Prediction of Friction Stir Welding Characteristic Using Neural Net- work [ J ]. Jordan Journal of Mechanical and Industrial Engineering,2008,2 ( 3 ) : 151 - 155. 被引量:1
  • 6Dr. K. Brahma Raju, N. Harsha, V. K. Viswanadha Raju. Prediction of Tensile Strength of Friction Stir Welded Joints Using Artificial Neural Networks[ J]. International Journal of Engineering Research & Technology, 2012,1 (9):1 -5. 被引量:1
  • 7Nan Zhou, Jixiong Zhang, Ju Feng, et al. Genetic Algo- rithm Coupled with the Neural Network for Fatigue Prop- erties of Welding Joints Predicting[ J]. Journal of Com- puters ,2012,7 ( 8 ) : 1857 - 1894. 被引量:1
  • 8N. Raghavendra,Rakshit Koranne,Sukhomay Pal,et al. Joint strength prediction in a pulsed MIG welding process using hybrid neuro ant cony- optimized model [ J]. Advanced Manufacturing Technology ,2008,41 (7 - 8) :694 - 705. 被引量:1
  • 9N. Raghavendra, Rakshit Koranne, Sukhomay Pal, et al. Joint strength prediction in a pulsed MIG welding process using hybrid neuro ant colony - optimized mode[ J]. The International Journal of Advanced Manufacturing Tech- nology,2009 (41) :694 -705. 被引量:1
  • 10Simranpreet Singh Gill, Jagdev Singh. Artificial intelligent modeling to predict tensile strength of inertia friction - welded pipe joints[ J]. The International Journal of Ad- vanced Manufacturing Technology, Published online: 20 July 2013. http://ljnk, springer, com/article/10. 1007/ s00170 -013 -5177 -5. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部