期刊文献+

希尔伯特-黄变换增强高刺激率AEP的信噪比 被引量:5

Improved Signal-to-noise Ratio of AEP Based on HHT
下载PDF
导出
摘要 针对高刺激率模式下运用连续循环去卷积的方法提取的听觉诱发电位(AEP)可能需要比常规方法更长的记录时间,受试者要忍受大量的声音刺激的问题,本文提出运用希尔伯特-黄变换的去噪方法来减少刺激个数。首先对采集到的每个扫程的脑电信号进行经验模态分解,得到一组固有模态函数(IMFs),然后将这些IMFs分为有用信号层和噪声层,采取非线性阈值方法分层进行去噪处理,以提高信号去卷积前的信噪比。处理结果的评估以1 014个扫程的脑电数据按照常规方法处理的提取AEP为基准,计算去噪后AEP和基准AEP的信噪比与相关系数。结果表明该方法能够有效减少约2/3的刺激个数,是一种十分有前景的高刺激率下AEP信号的提取方法。 The high rate stimulation paradigm using continuous loop averaging deconvolution(CLAD) for extracting the transient auditory evoked potential(AEP) usually requires more recording time than conventional one in order to obtain a clear AEP with equivalent signal-to-noise ratios(SNRs),which means subjects have to suffer a much larger amount of stimulus sound delivered to the their ears.This study aims at reducing the number of stimulus sweeps through signal denoising technique developed by Hilber-Huang transform(HHT).The EEG sweeps are decomposed into layers of intrinsic mode functions(IMFs) which can then be classified as noise layers and signal layers accordingly.The nonlinear thresholdfilters are applied to these layers separately to improve the corresponding SNRs before deconvolution.The proposed method is validated by 1 014 sweeps of AEP data examined with measurements of SNR,i.e.Fmpand correlation coefficients CCs,which shows that more than two thirds of sweeps can be saved to reach equivalent signal quality.
出处 《数据采集与处理》 CSCD 北大核心 2011年第3期280-285,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(60771035)资助项目 广东省2009年高等学校人才引进资助项目
关键词 听觉诱发电位 HILBERT-HUANG变换 非线性阈值滤波 auditory evoked potential(AEP) Hilbert-Huang transform(HHT) nonlinear threshold-filters
  • 相关文献

参考文献18

  • 1DalyDM, Roeser R J, AungMH, et al. Early evoked potentials in patients with acoustic neuroma [J]. Electroencephalograph and Clinical Neurophysiology, 1977,43(2) : 151-159. 被引量:1
  • 2Counter S A. Neurophysiological anomalies in brainstem responses of mercury-exposed children of Andean gold miners [J]. Journal of Occupational and Environmental Medicine, 2003,45(1) :87-95. 被引量:1
  • 3Bell S L, Smith D C, Allen R, et al. The auditory middle latency response, evoked using maximum length sequences and chirps, as an indicator of adequacy of anesthesia[J]. Anesthesia and Analgesia, 2006,102 (2) :495-498. 被引量:1
  • 4Millan J, Ozdamar O, Bohorquez J. Acquisition and analysis of high rate deconvolved auditory evoked po- tentials during sleep [C]//EMBS '06. 28th Annual International Conference of the IEEE. NY, USA: IEEE Computer Society Press, 2006:4987-4990. 被引量:1
  • 5Delgado R E, Ozdamar O. Deconvolution of evoked responses obtained at high stimulus rates[J]. The Journal of Acoustical Society of America, 2004,115 (3) : 1242-1251. 被引量:1
  • 6Wang Tao, Ozdamar O, Bohorquez J, et al. Wiener filter deconvolution of overlapping evoked potentials [J]. Journal of Neuroscience Methods, 2006, 158 (2):260-270. 被引量:1
  • 7Wang Tao, Su Yanyan, Shen Qian, et al. A simulation study assessing the efficiency of deriving evoked responses using high stimulus rate [C]//30th Annual International Conference of the IEEE. Vancouver, BC : IEEE Computer Society Press, 2008 : 5033-5036. 被引量:1
  • 8Quiroga R Q, Sakowitz O W, Basar E, et al. Wavelet transform in the analysis of the frequency composition of evoked potentials[J]. Brain Research Protocols, 2001,8(1): 16-24. 被引量:1
  • 9Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proe Roy Soc Lond A, 1998,454(1971):903-995. 被引量:1
  • 10Huang N E, Wu M L, Long S R. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[C]//Proc Roy Soc Lond A. London: [s.n. ], 2003,459:2317-2345. 被引量:1

二级参考文献11

  • 1Qin S, Chen DP. Joint Time-Frequency Analysis[J]. IEEE Signal Processing Magazine, 1999, 16(2): 52-67. 被引量:1
  • 2boashash B. Estimating and Interpreting the Instantaneous Frequency of a Signal--Part 1:Fundamentals[J]. Proc. IEEE, 1992, 80(4): 520-538. 被引量:1
  • 3Champency C D. A Handbook of Fourier Theorems[M]. London: Cambridge University Press, 1987. 被引量:1
  • 4Huang N E. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. J. Proc.R. Soc. Lond. A, 1998, 454: 903-995. 被引量:1
  • 5Cohen L. Time Frequency Analysis[M]. New York: Prentice-Hall, 1995. 被引量:1
  • 6Schlurmann T. Spectral Analysis of Nonlinear Water Waves Based on the Hilbert-Huang Transformation[J]. Journal of Offshore Mechanics and Arctic Engineering- Transactions of the ASME, 2002, 124(1): 22-27. 被引量:1
  • 7Veltcheva A D. Wave and Group Transformation by a Hilbert Spectrum [J]. Coastal Engineering Journal, 2002, 44(4): 283 - 300. 被引量:1
  • 8Pinzon J E. Using HHT to Successfully Uncouple Seasonal and Interannual Components in Remotely Sensed Data[A]. Proc 6th World Multiconference on Systemics, Cybernetics and Informatics, 2002. 287- 292. 被引量:1
  • 9Zhong Y M, Qin S R. HHT and a New Noise Removal Method[A].Proc 2nd International Symposium on Instrumentation Science and Technology, 2002. 553 - 557. 被引量:1
  • 10Loh C H. Application of the Empirical Mode Decomposition-Hilbert Spectrum Method to Identify Near-Fault Ground-Motion Characteristics and Structural Responses[J]. Bulletin of the Seismological Society of America, 2001, 91(5): 1339 - 1357. 被引量:1

共引文献68

同被引文献67

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部