期刊文献+

基于彩色形态筛的建筑物主体轮廓提取算法 被引量:1

Urban Building Contour Extraction Method Based on Convex Color Sieves
下载PDF
导出
摘要 针对常见的城市建筑物图像,提出了一种由单幅图像自动完成建筑物主体轮廓提取的算法。算法利用基于凸包彩色形态筛的多尺度性,设计了城市建筑物场景贝叶斯概率统计模型,由最大化后验概率(Maximum a pos-terior,MAP)估计消隐点在图像中的投影,利用边缘像素分类的结果获得建筑物的主体轮廓。该算法可用于单幅图像,不需要边缘检测和Hough变换等处理。实验结果证明,通过估计该场景结构可以自动获得消隐点在图像中的投影,进而提取建筑物的平行六面体主体轮廓。 A new automatic extraction method for main building contour is proposed.It applies convex color sieves(CCS) of small-scale to construct a city-building Bayesian model.From the maximum a posterior(MAP) of the angles, the positions of three vanishing points can be determined.Then,the main building contour is extracted according to edge-pixels cluster results.The algorithm is applied to single image without involving processing stage such as edge detection or Hough transform.Experimental results show that estimating the constructed grid can automatically obtain the vanishing points and extract the main parallelepiped border of building.
出处 《数据采集与处理》 CSCD 北大核心 2011年第3期263-268,共6页 Journal of Data Acquisition and Processing
基金 国家高技术研究发展计划(“八六三”计划)(2008AA12Z3475788)资助项目 淮海工学院引进人才科研启动基金资助项目 淮海工学院校内课题(Z2009033)资助项目
关键词 计算机视觉 轮廓提取 相机标定 彩色形态筛 消隐点 computer vision contour extraction camera calibration convex color sieves(CCS) vanishing point
  • 相关文献

参考文献18

二级参考文献62

  • 1吴凤和,施法中,胡占齐.面向数控加工的图像处理方法研究[J].中国机械工程,2004,15(13):1163-1166. 被引量:10
  • 2贺磊,黄桂平,李广云,毛悦.工业测量数据的可视化方法研究[J].测绘学院学报,2004,21(4):305-307. 被引量:9
  • 3宋丽梅,周兴林,徐可欣,曲兴华,叶声华.基于单幅测量图像的三维缺陷检测技术[J].光学学报,2005,25(9):1195-1200. 被引量:19
  • 4章毓晋.图像处理和分析[M].清华大学出版社,1999,3.. 被引量:146
  • 5[1]Mohan R, Nevatia R. Using Perceptual Organization to Extract 3-D Structures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(11), 1121-1139 被引量:1
  • 6[2]Shufelt J A. Performance Evaluation and Analysis of Monocular Building Extraction From Aerial Imagery[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4): 311-326 被引量:1
  • 7[3]Stephen T. Barnard, Interpreting Perspective Images[J]. Artificial Intelligence, 1983, 21 (5): 435-462 被引量:1
  • 8[4]Magee M J, Aggarwal J K. Determining Vanishing Point from Perspective Images[J]. Computer Vision, Graphics, and Image Processing, 1984, 26(3): 256-267 被引量:1
  • 9[5]Caprile B, Torre V. Using Vanishing Points for Camera Calibration[J].International Journal of Computer Vision, 1990, 4(2): 127-139 被引量:1
  • 10[6]Nevatia R, Babu K R. Linear Feature Extraction and Description[J].Computer Graphics and Image Processing, 1980, 13(3): 257-269 被引量:1

共引文献70

同被引文献20

  • 1胡正平,王成儒,练秋生.基于图像分解的快速多圆/椭圆检测方法[J].仪器仪表学报,2002,23(z1):292-294. 被引量:5
  • 2王欣,殷肖川,周翔翔.一种改进的模版匹配识别算法[J].计算机工程与应用,2007,43(36):238-240. 被引量:17
  • 3Kim Heung-Soo,Kim Jong-Hwan.A two-step circle detection algorithm from the intersection chords[J].Pattern Recognition Letters,2001,22(6/7):787-798. 被引量:1
  • 4Yin Peng-yeng.A new circle/ellipse detector using genetic algorithms[J].Pattern Recognition Letters,1999,20(7):731-740. 被引量:1
  • 5Xu L,Oja E.Randomized Hough transform:basic mechanisms,algorithms and computational complexities[J].Computer Vision Graphic Image Process:Image Understanding,1993,57(2):131-154. 被引量:1
  • 6Yoo J H,Sethi I K.An ellipse detection method from the polar and poles definition of conics[J].Pattern Recognition,1993,26(2):307-315. 被引量:1
  • 7Shark L K,Kurekin A A,Matuszewski B J.Development and evaluation of fast branch-and-bound algorithm for feature matching based on line segments[J].Pattern Recognition,2007,40(5):1432-1450. 被引量:1
  • 8Paramanand C,Rajagopalan A N.Efficient geometric matching with higher-order features[C]//19th International Conf on Pattern Recognition,2008. 被引量:1
  • 9Huttenlocher D P,Klanderman G A,Rucklidge W J.Comparing images using the hausdorff distance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(9):850-863. 被引量:1
  • 10Ulrich M,Steger C,Baumgartner A.Realtime object recognition using a modified generalized Hough transform[J].Pattern Recognition,2003,36(11):2557-2570. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部