摘要
弹道目标跟踪比较复杂,文中结合具体的坐标系推导滤波算法中各方程的解析表达式,并分析比较坐标系的影响,对工程应用有重要的意义。以"二体运动"方程为基础,通过坐标变换、二次求导等方法推导了球坐标系下的目标加速度。针对混合坐标系和球坐标系,给出了中段弹道目标的动力学方程和量测方程,并对采用扩展卡尔曼滤波所需要的关键函数给出了显式表达。对两种坐标系下的弹道目标跟踪进行了蒙特卡洛仿真,仿真结果表明按照本文推导的公式,2种坐标系下都能有效跟踪;但与直观的猜测相反-混合坐标系下的跟踪优于球坐标系下的跟踪。
The complexity of ballistic target tracking makes it of great value to engineering application to derive the analytical equa- tions of the filter algorithm in a given coordinate system and analyze its effect on the tracking accuracy. Based on "two-body" equa- tion of motion, the ballistic target acceleration in spherical coordinates is derived from the transformation of coordinates and second derivation. Both the dynamic equations and measurement equations in the mixed and spherical coordinates are presented and the key function in extended Kalman filter is described analytically. Monte-Carlo simulation run for the ballistic target tracking indi- cates that the ,equations proposed in this paper are effective in both coordinates, but contrary to our intuition, tracking in the mixed coordinates is superior to that in the spherical coordinates.
出处
《现代雷达》
CSCD
北大核心
2011年第5期54-59,共6页
Modern Radar
基金
中国博士后科学基金面上资助项目(20080441299)
中国博士后科学基金特别资助项目(200902672)
关键词
球坐标系
混合坐标系
弹道目标
动力学方程
跟踪
spherical coordinate system
mixed system
ballistic target in midcourse
dynamic equations
tracking