摘要
受一类二阶常系数非齐次线性微分方程y″+py′+qy=f(x)(其中:p=λ1+λ2;q=λ1λ2)通解的简便求法启发,给出了求一类二阶变系数非齐次线性微分方程y″+p(x)y′+q(x)y=f(x)(其中:p(x)=λ1(x)+λ2(x);q(x)=λ1′(x)+λ1(x)λ2(x))的通解的方法.
By using the simple method of general solution for a kind of two-order constant coefficient inhomogeneous linear differential equation y″+py′+qy =f(x)(p=λ1 + λ2,q=λ1 λ2),obtained general solution for a kind of two-order variable coefficient inhomogeneous linear differential equation y″+p(x)y′+q(x)y =f(x)(p(x)= λ1(x) + λ2(x),q(x)=λ1′(x) +λ1(x) λ2(x)).
出处
《高师理科学刊》
2011年第3期45-47,共3页
Journal of Science of Teachers'College and University
关键词
二阶变系数非齐次线性微分方程
降阶法
通解
two-order variable coefficient inhomogeneous linear differential equation
method of reduction of order
general solution