摘要
曲面积分和曲线积分的计算是高等数学的重点.在已有的文献中,第一型曲线积分和第二型曲线积分之间有相应的转化关系,第一型曲面积分和第二型曲面积分之间也有相应的转化关系.在这些基础之上,给出了用第二型曲线积分去计算第一型曲面积分的方法,并举例说明方法的正确性.
It is a keynote of the advanced mathematics to compute the curvilinear integral and the surface integral. On existed works, the relationship between the first curvilinear integral and the second curvilinear integral was proposed, while the relationship between the first surface integral and the second surface integral was also proposed. Based on these, proposed a method which use the second curvilinear integral to compute the first surface integral. At last an example was given to illustrate the rightness of the method.
出处
《高师理科学刊》
2011年第3期33-35,共3页
Journal of Science of Teachers'College and University
基金
常州大学教学研究立项课题(GJY10020034)
关键词
曲线积分
曲面积分
连续函数
curvilinear integral
surface integral
continuous function