期刊文献+

我国不良贷款回收率的影响因素和预测模型 被引量:14

Influencing factors and prediction models for recovery rate of non-performing loans in China
原文传递
导出
摘要 利用中国资产管理公司的不良贷款数据库,对影响我国不良贷款回收率的因素:风险暴露规模、地区、行业、担保方式、五级分类、逾期时间等,进行了统计分析;在此基础上,建立了单户处置企业的不良贷款回收率预测模型,并且利用模型的各个影响因素对回收率的贡献程度进行了测算以单户预测模型为基础,结合打包处置的处置策略,利用十折交叉验证和组合预测的思想,建立了打包处置的回收率预测模型.实证结果表明:无论是单户预测模型还是打包预测模型,预测结果均达到了较高的精度. Based on NPL database of AMC in China, this paper gives a comprehensive investigation on influencing factors for recovery rate of China's non-performing loans. These factors include risk exposure, area, industry, collateral type, 5-category loan classification, and time between default and clearing, etc. A recovery rate prediction model is built for the individual company clearing way. This model is used to analyze the recovery contribution of each influencing factor. Moreover, based on this model, this paper further builds a prediction model for package clearing way by incorporating with the techniques of 10-fold cross-validation and combination forecasting. Empirical results show that both models have relatively high precision.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2011年第5期870-880,共11页 Systems Engineering-Theory & Practice
基金 国家973计划(2007CB814902) 国家自然科学基金(70933003)
关键词 不良贷款 回收率 影响因素 预测模型 non-performing loans recovery rate influencing factor prediction model
  • 相关文献

参考文献13

  • 1Altman E I, Kishore V M. Almost everything you wanted to know about recoveries on defaulted bonds[J]. Financial Analysts Journal, 1996, 52: 57-64. 被引量:1
  • 2Frye J. Depressing recoveries[J]. Risk, 2000, 13: 108-111. 被引量:1
  • 3Frye J. Collateral damage: A source of systematic credit risk[J]. Risk, 2000, 4. 被引量:1
  • 4Araten M, Jacobs M, Varshney P. Measuring LGD on commercial loans: An 18 years internal study[J}. RMA Journal, 2004, 86: 28-35. 被引量:1
  • 5Gupton G, Stein R. LossCalc: Moody's model for predicting loss given default (LGD)[J]. Moody's Investor Service, February, 2002. 被引量:1
  • 6Friedman C, Sandow S. Estimating conditional probability distributions of recovery rates proach[EB/OL]. SSRN: http://ssrn.com/abstract=874754. 被引量:1
  • 7陈忠阳.违约损失率(LGD)研究[J].国际金融研究,2004(5):49-57. 被引量:33
  • 8张海宁.银行反对银行[M].北京:清华大学出版社,2004:165-169. 被引量:6
  • 9叶晓可,刘海龙.银行不良贷款违约损失率结构特征研究[J].上海管理科学,2006,28(6):12-15. 被引量:21
  • 10Asarnow E, Edwards D. Measuring loss on defaulted bank loans: A 24-year study[J]. Journal of Commercial Lending, 1995, 77: 11-23. 被引量:1

二级参考文献29

  • 1Basel Committee, Potential Modifications to the Committee's Proposals, 5 Nov., 2001. 被引量:1
  • 2Basel Committee, Results of Quantitative Impact Study 2.5, 25 June, 2002. 被引量:1
  • 3Basel Committee, New Basel Capital Accord CP3, April 2003. 被引量:1
  • 4Basel Committee, Quantitative Impact Study 3 - Overview of Global Results, 5 May, 2003. 被引量:1
  • 5Basel Committee, Modifications to the capital treatment for expected and unexpected credit losses in the New Basel Accord, 30 Jan. 2004. 被引量:1
  • 6Basel Committee, The Internal Ratings - Based Approach, Supporting Document the CP2 , Jan. 2001. 被引量:1
  • 7Basel Committee, Range of Practice in Banks' Internal Ratings System, Jan. 2000. 被引量:1
  • 8OCC, US, Rating Credit Risk, Comptrollers Handbook, April 2001. 被引量:1
  • 9Working group led by Arturo Estrella, Credit Ratings and Complementary Sources of Credit Quality Information, Basel Committee Working Papers, No. 3, August 2000. 被引量:1
  • 10Mark Carey, Federal Reserve Board, Some Evidence on the Consistency of Banks' Internal Credit Ratings. 被引量:1

共引文献45

同被引文献107

引证文献14

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部