期刊文献+

近红外光谱分析中的高斯过程回归方法 被引量:4

Gaussian Process Regression and Its Application in Near-Infrared Spectroscopy Analysis
下载PDF
导出
摘要 将高斯过程算法引入化学计量学领域,用于挖掘近红外光谱与被测物组分之间的复杂关系。为增加模型的稳健性,首先采用了蒙特卡罗交叉验证方法以去除异常样本,而后多元散射校正、平滑、导数等方法被用于模型的预处理。近红外光谱在经过无信息变量去除算法处理后,在保留有用信息的基础上大大缩减了波长点数,以这些特征波长点作为输入建立的分析模型更具有解释能力和稳健性。为验证算法的有效性,使用了一组公开的数据集,它包含了80个玉米样品的近红外光谱以及油、淀粉、蛋白质的含量值。GP回归算法被用于分析这三种组分的含量,所得模型的评价指标分别采用校正、校正集交叉验证均方根误差、预测均方根误差以及各自的相关系数。结果显示,模型的校正相关系数r达到0.99以上,预测时的相关系数r也在0.96以上,验证了该算法的有效性。 Gaussian process(GP) is applied in the present paper as a chemometric method to explore the complicated relationship between the near infrared(NIR) spectra and ingredients.After the outliers were detected by Monte Carlo cross validation(MCCV) method and removed from dataset,different preprocessing methods,such as multiplicative scatter correction(MSC),smoothing and derivate,were tried for the best performance of the models.Furthermore,uninformative variable elimination(UVE) was introduced as a variable selection technique and the characteristic wavelengths obtained were further employed as input for modeling.A public dataset with 80 NIR spectra of corn was introduced as an example for evaluating the new algorithm.The optimal models for oil,starch and protein were obtained by the GP regression method.The performance of the final models were evaluated according to the root mean square error of calibration(RMSEC),root mean square error of cross-validation(RMSECV),root mean square error of prediction(RMSEP) and correlation coefficient(r).The models give good calibration ability with r values above 0.99 and the prediction ability is also satisfactory with r values higher than 0.96.The overall results demonstrate that GP algorithm is an effective chemometric method and is promising for the NIR analysis.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第6期1514-1517,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(10972207) 浙江省科技计划项目(2008C23085)资助
关键词 高斯过程 近红外光谱 蒙特卡罗交叉验证 无信息变量去除 定量分析 Gaussian process Near-infrared spectroscopy Monte Carlo cross validation Uninformative variable elimination Quantitative analysis
  • 相关文献

参考文献3

二级参考文献71

共引文献50

同被引文献47

  • 1池宏康,周广胜,许振柱,袁文平.草地植被盖度的近距离遥感测定[J].草业学报,2007,16(2):105-110. 被引量:30
  • 2Giannitrapani A, Ceccarelli N, Scortecci F, et al. Comparison ofEKF and UKF for spacecraft localization via angle measurements[J]. IEEE Trans. on Aerospace a~M Electronic Systems ,2011,47(1 ) : 75 - 84. 被引量:1
  • 3Gerasimos G R. Nonlinear Kalman filters and particle filters {or integrated navigation o{ unmanned aerial vehicles[J]. Robotics and Autonomous Systems ,2012,60(7) :978 - 995. 被引量:1
  • 4Ferris B, Haehnel D, Fox D. Gaussian processes {or signal strengt h- based location estimation~C~//Proc, of the International Conference on Robotics, Science and Systems, 2006 ,, 303 - 310. 被引量:1
  • 5Taeryon C. Alternative posterior consistency results in nonpara metric binaryregression using Gaussian process priors[J]. Jour nal of Statistical Planning and Inference, 2007,137(9) : 2975 - 2983. 被引量:1
  • 6Jonathan K, Daniel J K, Dieter F, et al. GP-UKF: unseemed Kalman filters with Gaussian process predietion and observation models~C~//Proc, of the International Conference on Intelli- gent Robots and Systems ,2007:1901 - 1907. 被引量:1
  • 7Gao S S, Wei W H, Zhong Y M, et al. Rapid alignment method based on local observability analysis for strapdown inertial naviga- tion system[J]. Acta Astronautica ,2014,94(2) :790 - 798. 被引量:1
  • 8祝诗平.基于PCA与GA的近红外光谱建模样品选择方法[J].农业工程学报,2008,24(9):126-130. 被引量:16
  • 9王加华,韩东海.基于遗传算法的苹果糖度近红外光谱分析[J].光谱学与光谱分析,2008,28(10):2308-2311. 被引量:47
  • 10李世卫,李洪文.基于计算机视觉的田间秸秆覆盖率计算[J].农机化研究,2009,31(1):20-22. 被引量:5

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部