期刊文献+

涓流床中液体分布形态与滞后特性

Liquid distribution morphology and hysteresis characteristics in trickle-bed reactor
下载PDF
导出
摘要 采用电容层析成像仪(ECT)和压力传感器在气-液预液泛模式润湿床层的条件下分别测定了空气-水体系在内径140 mm有机玻璃塔中由不同粒径玻璃珠所组成床层的持液量滞后和压降滞后曲线。利用平行流区模型对实验数据进行了分析,得出了不同操作状态下的膜流分率、簇状流区和气相流区的比例以及各流区的流速。发现在高的气液流速下,单相区比例较气液两相区的比例要小得多。当气体流量增加时,气相流区比例不增反减,而气液流区比例增加,这说明气液之间作用强烈,气液接触充分。在气液流区,气体流速大于液体流速,且气体流速和表观流速总是接近。 The experimental work was conducted in a plexiglass column of 140 mm ID packed with glass beads of different diameters(1.9,3.6,5.2 and 9.3 mm)by using air and water as the working system after the column was pre-flooded with high gas and high liquid flow rates to ensure complete wetting of the bed.The data acquisition of liquid holdup and pressure drop hysteresis loops was made possible by installation of pressure transducers and electrical capacitance tomography(ECT).The proportions of film flow,cluster zone and gas zone were obtained by analyzing the experiment data in different operation conditions using the parallel zone model.It was found that the proportion of single gas or cluster zone was much smaller than that of the gas-liquid zone when gas and liquid flow rates were high.The proportion of gas zone decreased instead of increasing when gas flow rate increased.But the proportion of gas-liquid zone increased.It indicated that there was strong interaction between liquid and gas.In gas-liquid zone,gas flow rate was greater than liquid flow rate.Meanwhile,gas flow rate was always close to superficial gas velocity.
出处 《化工学报》 EI CAS CSCD 北大核心 2011年第6期1515-1523,共9页 CIESC Journal
基金 国家自然科学基金项目(20876043 21076072) 长江学者和创新团队发展计划项目(IRT0721) 高等学校学科创新引智计划项目(B08021)~~
关键词 涓流床 电容层析成像 持液量 相对渗透率 滞后 液体分布 trickle-bed electrical capacitance tomography liquid holdup relative permeability hysteresis liquid distribution
  • 相关文献

参考文献23

  • 1Kan K,Greenfield P F.Multiple hydrodynamic states in cocurrent two-phase downflow through packed beds[J].Ind.Eng.Chem.Process Design Dev.,1975,17:482-485. 被引量:1
  • 2Kan K,Greenfield P F.Pressure drop and holdup in two-phase cocurrent trickle flows through beds of smap packings[J].Ind.Eng.Chem.Process Design Dev.,1979,18:740-745. 被引量:1
  • 3Christensen U,McGovern S J,Sundaresan S.Cocurrent downflow of air and water in a two-dimensional packed column[J].AIChE Journal,1986,32:1677-1689. 被引量:1
  • 4Chu C F,Ng K M.Model for pressure drop hysteresis in trickle-beds[J].AIChE Journal,1989,35:1365-1369. 被引量:1
  • 5Maiti R N,Khanna R,Nigam K D P.Trickle-bed reactors:porosity-induced hysteresis[J].Ind.Eng.Chem.Res.,2005,44:6406-6413. 被引量:1
  • 6Saez A E,Carbonell R G.Hydrodynamic parameters for gasliquid cocurrent flow in packed beds[J].AIChE Journal,1985,31:52-62. 被引量:1
  • 7Wang R,Mao Z S,Chen J.Experimental and theoretical studies of pressured drop hysteresis in trickle bed reactors[J].Chem.Eng.Sci.,1995,50:2321-2325. 被引量:1
  • 8Helwick J A,Dilon P O,McCready M J.Time-varying behaviour of cocurrent gas-liquid flows in packed-beds[J].Chem.Eng.Sci.,1992,47:3249-3256. 被引量:1
  • 9Krieg D A,Helwick J A,Dillon P O,McCready M J.Origin of disturbances in cocurrent gas-liquid packed-bed flows[J].AIChE Journal,1995,41:1653-1666. 被引量:1
  • 10Reinecke N,Mewes D.Investigation of the two-phase flow in trickle-bed reactors using capacitance tomography[J].Chem.Eng.Sci.,1997,52:2111-2127. 被引量:1

二级参考文献23

  • 1Han Chongren(韩崇仁).PIydrocracking Technology and Engineering(加氢裂化工艺与工程).Beijing:SINOPEC Press,2006. 被引量:1
  • 2Weekman V W, Wyers J E. Fluid-flow characteristics of cocurrent gas-liquid flow in packed beds. AIChE Journal, 1964, 10:951-957. 被引量:1
  • 3ChenSongying(陈诵英).Trickle-bed reactor( Ⅰ )[J].化学工程,1981,9(3):51-56. 被引量:1
  • 4Charpentier J C, Favier M. Some liquid holdup experimental data in trickle-bed reactors for foaming and nonfoaming hydrocarbons. AIChE Journal, 1975, 21:1213-1218. 被引量:1
  • 5Tosun G A. Study of cocurrent downflow of nonfoaming gasliquid systems in a packed bed ( Ⅰ ) : Flow regimes: search for a generalized flow map. Ind. Eng. Chem. Process Des. Dev., 1984, 23:29-34. 被引量:1
  • 6Cheng Z M, Fang X C, Zhou Z M, Huang Z B, Yuan W K. Evaluation on the dependence of multiphase flow and reaction upon the morphology of porous media network. Ind. Eng. Chem. Res. , 2007, 46:8459-8470. 被引量:1
  • 7Cheng Z M, Zhou Z M, Huang H J, Yuan P Q, Yang D. Simulation of an industrial trickle-bed hydrogenation reactor in the pulsing flow regime. Int. J. Engineering Systems : Modeling and Simulation, 2009, 1 ( 4 ) : 211-221. 被引量:1
  • 8Tapp H S, Peyton A J, Kemsley E K, Wilson R H. Chemical engineering applications of electrical process tomography. Sensors and Actuators B, 2003, 92: 17-24. 被引量:1
  • 9van der Merwe W, distribution and stabi Engineering Journal, Nicol W, de Beer F. Trickle flow ity by X-ray radiography. Chemical 2007, 132:47-59. 被引量:1
  • 10Lim M H M, Sederman A J, Gladden LF, Stitt E H. New insights to trickle and pulse flow hydrodynamics in tricklebed reactors using MRI. Chemical Engineering Science, 2004, 59: 5403-5410. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部