期刊文献+

机载激光雷达的作物叶面积指数定量反演 被引量:23

Inversion of leaf area index based on small-footprint waveform airborne LIDAR
下载PDF
导出
摘要 为了进一步挖掘激光雷达在植被垂直结构探测上的潜力,通过引入Kuusk的多层均匀冠层方向反射模型的单次散射部分,基于激光雷达发射和回波波形的高斯特征,模拟作物激光雷达回波,建立了作物叶面积体密度和叶面积指数的反演方法。模型输入参数的敏感性分析显示:G函数对反演结果的影响比土壤和叶片反射率大。最后利用"黑河综合遥感联合试验"的数据对反演方法进行了验证:反演的作物叶面积体密度与实测数据基本一致,叶面积指数反演的相对误差为12.5%。结果表明该方法可以有效反演作物叶面积体密度和叶面积指数,为作物结构参数反演提供了新的途径。 In order to study the detection of vertical structure information of vegetation, a simulation of LIDAR return waveform based on the single scattering of crown reflectance model and the Gaussian character of incidence and return waveform was proposed. The corresponding inversed method was established to calculate the crop leaf area density and leaf area index. The sensitivity analysis illustrated G function had a larger impact on inversed results than soil and leaf reflectivity. Finally, the data of Water (Watershed Airborne Telemetry Experimental Research) was used to validate this method. The results showed that the inversed leaf area density was consistent with the field measurement data, and the relative error of the inversed LAI was 12.5%. Therefore, this method can provide a new way to detect the vegetation structural parameters.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2011年第4期207-213,共7页 Transactions of the Chinese Society of Agricultural Engineering
基金 中国科学院西部行动计划项目(KZCX2-XB2-09) 国家自然科学基金重点项目(40730525) 国家重点基础研究发展规划项目(2007CB714400)
关键词 作物 激光 雷达装置 全波形 叶面积体密度 叶面积指数 crops lasers radar equipment waveform leaf area density leaf area index
  • 相关文献

参考文献17

  • 1Nilsson M. Estimation of tree heights and stand volume using an airborne LIDAR systems[J]. Remote Sensing of Environment, 1996, 56(1): 1-7. 被引量:1
  • 2Nelson R, Oderwald R, Gregoire T G. Separating the ground and airborne laser sampling phases to estimate tropical forest basal area, volume, and biomass[J]. Remote Sensing of Environment, 1997, 60(3): 311 -326. 被引量:1
  • 3Means J E, Acker S A, Harding D J. Use of large-footprint scanning airborne LIDAR to estimate forest stand characteristics in the Western Cascades of Oregon[J]. Remote Sensing of Environment, 1999, 67(3): 298-308. 被引量:1
  • 4w . . Anderson H E, McHaughey R J, Reutebuch S E. Estimating forest canopy fuel parameters using LIDAR data[J]. Remote Sensing of Environment, 2005, 94(4): 441-449. 被引量:1
  • 5Riafio D, Valladares F, Condes S, Chuvieco E. Estimation of leaf area index and covered ground from airborne laser scanner (LIDAR) in two contrasting forests[J]. Agricultural and Forest Meteorology, 2004, 124(3/4): 269-275. 被引量:1
  • 6Sun G, Ranson K J. Modeling LIDAR returns from forest canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(6): 2617-2626. 被引量:1
  • 7Ni-Meister W, Jupp D L B, Dubayah R. Modeling LIDAR waveforms in heterogeneous and discrete canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 1943- 1958. 被引量:1
  • 8Kotchenova S, Nikolay V S, Knyazikhin Y. Modeling LIDAR waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest biomass[J]. Journal of Geophysical Research, 2003, 108 (D 15): 4484. 被引量:1
  • 9Blair J B, Hofton M A. Modeling laser altimeter return waveforms over complex vegetation using highresolution elevation data[J]. Geophysical Research Letters, 1999, 26: 2509-2512(16). 被引量:1
  • 10Kuusk A. A multispectral canopy reflectance model[J]. Remote Sensing of Environment, 1994, 50(2): 75- 82. 被引量:1

同被引文献365

引证文献23

二级引证文献371

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部